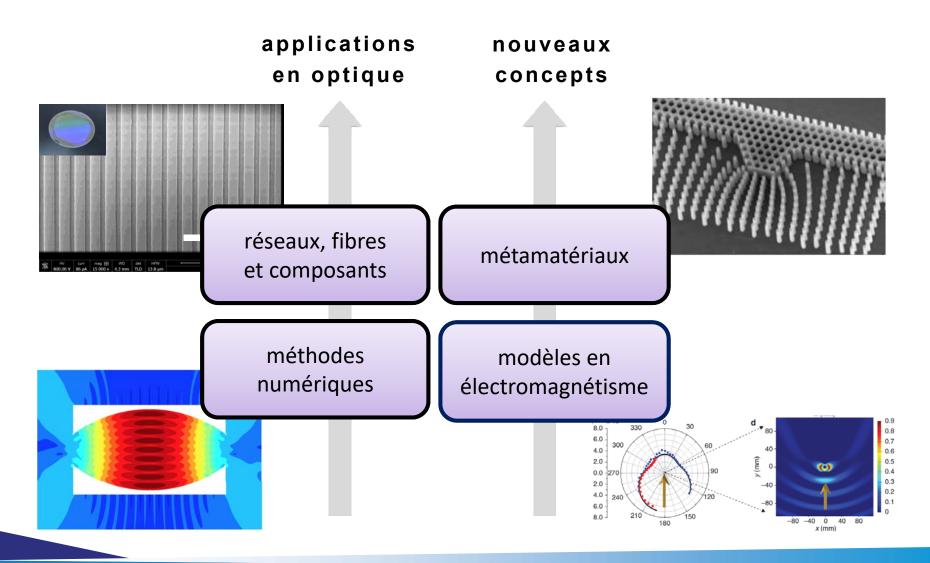
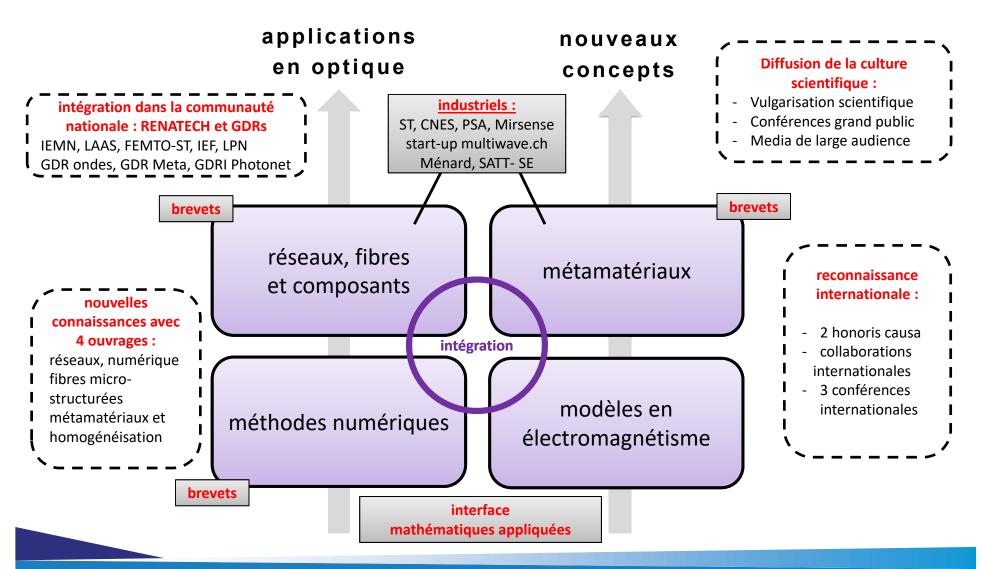
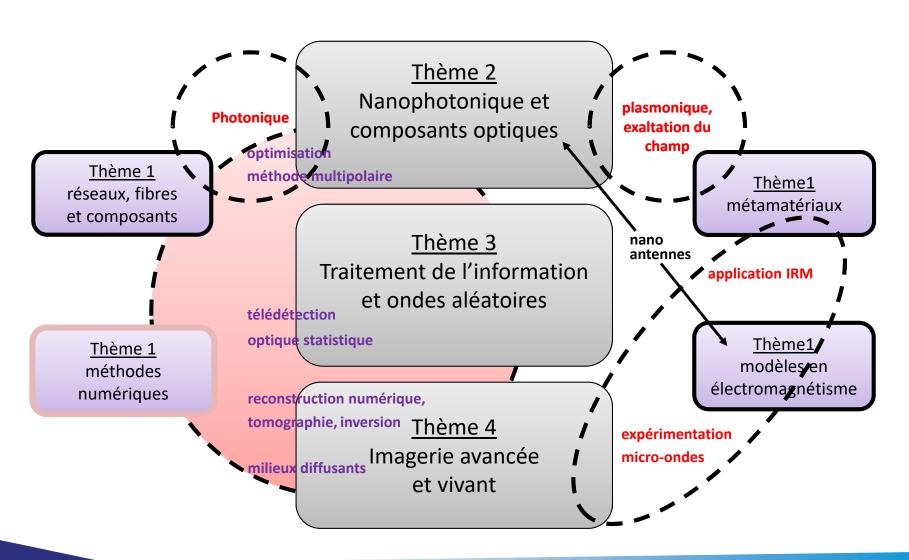
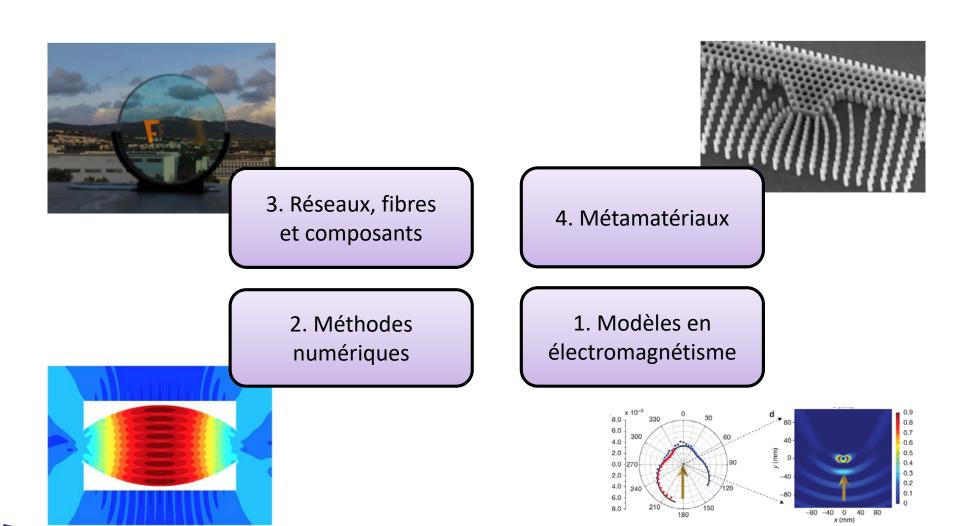


Bilan 01/2011 - 06/2016


Evaluation HCERES 3-5 janvier 2017




Thème 1: 4 activités de recherche


Points forts et originalités

Interactions avec les autres thèmes de l'Institut Fresnel

Panorama des 4 activités

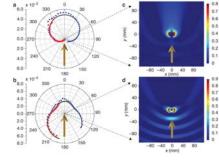
1. Modèles en électromagnétisme

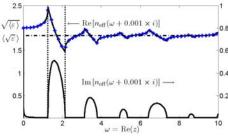
Quatre axes de recherche pertinents pour la photonique et les métamatériaux

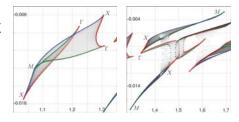
Analogie micro-ondes

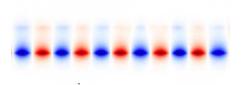
Modélisation expérimentale fine des effets optiques (nano-antennes): conditions de Kerker [Nat. Com.]

Nouvelles approches d'homogénéisation


Modélisation des composites en régime de résonance (cristaux photoniques, métamatériaux) : homogénéisation à ordre élevé


Effets de la dispersion


Modélisation de la dispersion (métaux et tous les matériaux composites) : formulation augmentée de Maxwell


Non-linéarités spatiales

Modélisation des effets spatiaux (guides d'onde plasmoniques) : mode asymétrique stable

2. Méthodes numériques

Méthodes spécifiques semi-analytiques (FMM, modes)

Méthodes générales avec maillage

Méthode intégrale volumique (DDA)

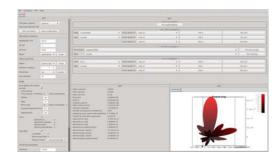
forces optiques [Nat. Nanotech.] **interface**

imagerie numérique

Méthode intégrale de surface

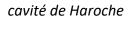
surfaces rugueuses

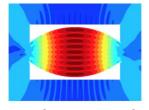
angle rasant

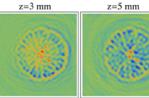

télédétection, optique statistique

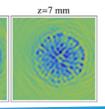
Méthode des éléments finis

développement modal
(changement de paradigme)

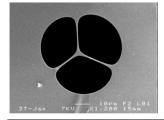

DDM (grands volumes)


Méthode Monte Carlo désordre : tissus biologiques, tomographie optique diffuse mise en ligne des codes


Interface graphique « maison »

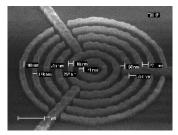

empilement de surfaces rugueuses

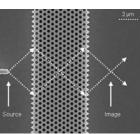
tissus biologiques



3. Réseaux de diffraction & fibres microstructurées

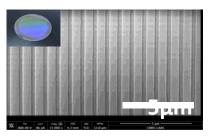
Exploitation des méthodes numériques spécifiques Forte intégration dans la communauté nationale Partenaires industriels: CNES, Groupe PSA


ISCR Rennes – Photonics Bretagne



C2N (IEF)

IEMN


Réseaux à résonance de mode guidé

Conception de filtres (brevet):

- indépendants de la polarisation
- accordables en fonction de l'angle (30-50 nm)
- tolérance angulaire x 10 (verrou dépassé)

<u>Partenariat:</u>

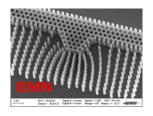
- CNES
- LAAS
- Mirsense

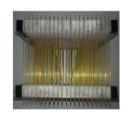
Système optique pour la vision tête haute

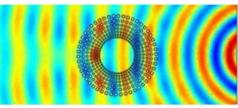
Conception de filtres (brevet déposé)

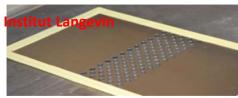
Solution de lame plane proposée (brevet déposé)

Partenariat avec C2N et Groupe PSA


PSA, C2N (IEF) et Institut Fresnel




4 Métamatériaux



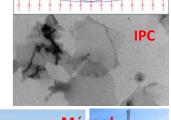
Approche originale à l'Institut Fresnel

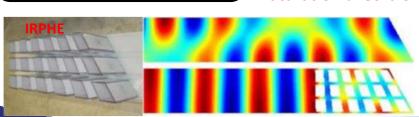
<u>extension aux autres ondes</u>: acoustique, mécanique, hydrodynamique, sismique <u>et processus de diffusion</u>: masse et chaleur

Analogie entre EDP : du nano-m au déca-m

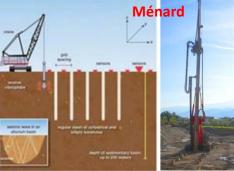
mécanique, acoustique : KIT, Institut Langevin, LMA

hydrodynamique: IRPHE


industriel Ménard, ISTERRE: sismique


Institut Paoli Calmettes: application biomédicale

Collaborations avec autres disciplines


Applications prometteuses (6 brevets)

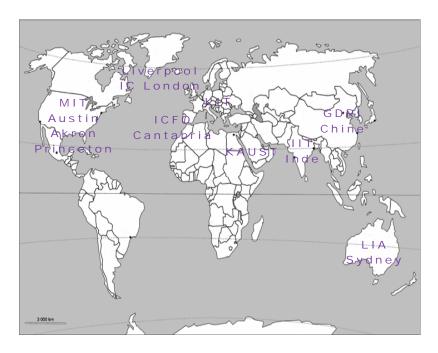
contrôle de la diffusion de médicaments protection sismique : preuve de concept avec l'Industriel Ménard (groupe Vinci) protection hydrodynamique : projet de maturation avec la SATT-Sud-Est

Thème Electromagnétisme et métamatériaux Chiffres-clés

25 permanents impliqués, 14 thèses soutenues

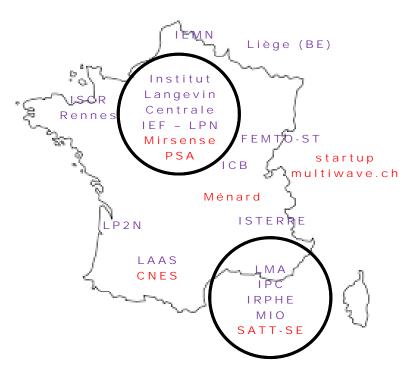
environ 9 ETP recherche (permanents)

140 publications sur la période


8 brevets, 4 ouvrages

Financements: ERC - PIA (A*midex) - 9 projets ANR

Distinctions: prix Ampère, IUF senior, 2 honoris causa


Principales collaborations

internationales

avec des laboratoires académiques

nationales

et des partenaires industriels

Réponses à des défis sociétaux

Nouvelles connaissances

nouveaux paradigmes : développement modal, protection avec cape verrous dépassés : tolérance angulaire des filtres, simplification de la dispersion, exaltation d'effets non-linéaires... transfert de modèles numériques et homogénéisation vers startup multiwave 4 ouvrages

Applications en optique et santé

filtres à réseau (<u>brevet</u>) avec <u>CNES</u>, fibres microstructurées filtres <u>CRIGF</u> (ANR-DGA Astrid) pour laser accordable dans le MIR vision tête haute pour l'automobile (dépôt de <u>brevets</u>) avec <u>l'industriel PSA</u> contrôle de la diffusion de médicaments

Protections hydrodynamique et sismique protection contre le bruit et les vibrations
prévention contre les risques naturels
industriel Ménard et projet de maturation SATT-SE
5 brevets

Diffusion de la culture scientifique

vulgarisation scientifique : Pour la science - La Recherche - Journal du CNRS conférences grand public : La Villette, CNRS, Académie Royale de Belgique... média de large audience : France Inter, RFI, France 2, M6, BBC, Le Monde ... actions vers le scolaire : accueil et visite collèges et lycées, fête de la science

Bilan 01/2011 - 06/2016

Evaluation HCERES 3-5 janvier 2017

Merci

