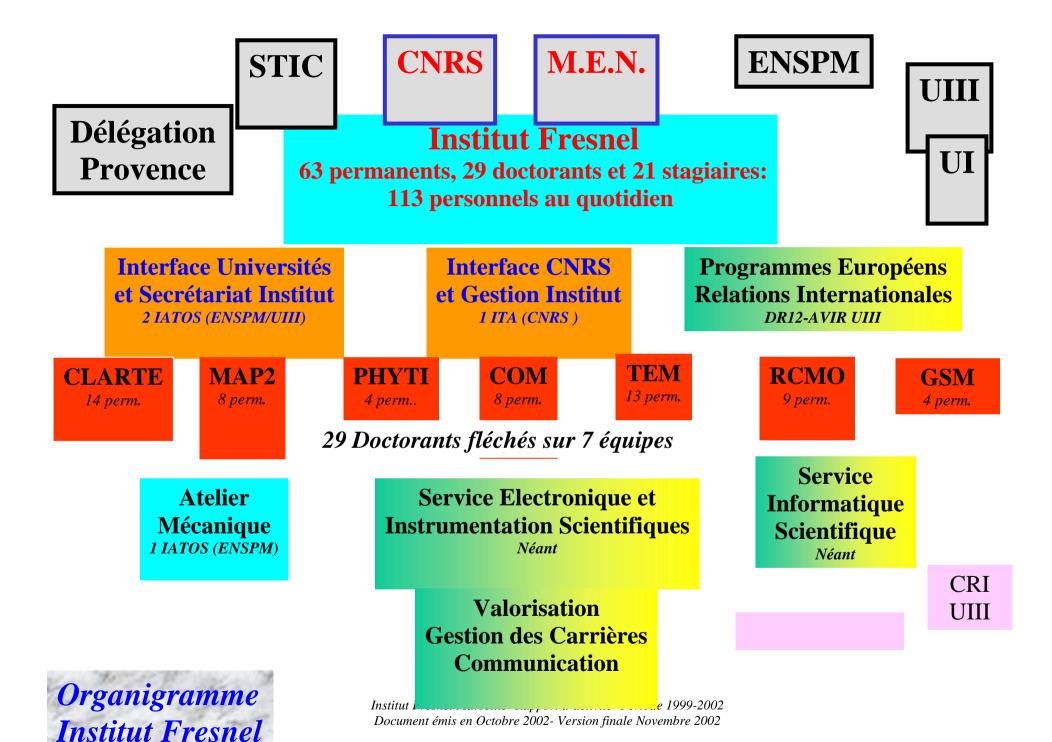


INSTITUT FRESNEL MARSEILLE

Sciences et Technologies de l'Optique, l'Electromagnétisme et l'Image UMR 6133

RAPPORT SCIENTIFIQUE D'ACTIVITE Période 1999-2002

TUTELLES NATIONALES


- Département CNRS : STIC
- Direction Scientifique MSU: DS2

TUTELLES REGIONALES

- Délégation Provence
- Université d'Aix-Marseille (rattachement principal)
 - Ecole Nationale Supérieure de Physique de Marseille (organisme gestionnaire)
 - Université de Provence

ECOLE DOCTORALE

Physique et Sciences de la Matière

Liste des équipes internes de l'UMR

Libellé de l'équipe interne	Responsable	Thématiques et opérations	Effectif équivalent temps plein
CLARTE: Contrôle de la Lumière et Analyse du Rayonnement- Traitement Electromagnétique	D. Maystre, G. Tayeb	- Structures à Bandes Interdites Photoniques - Réseaux de Diffraction	13,95
MAP2 : Milieux Aléatoires et Photonique de Puissance	M. Commandré	- Photonique de Puissance - Diffusion Lumineuse - Imageurs CMOS	8,43
PHYTI: Physique et Traitement de l'Image	P. Réfrégier	- Traitement d'images à l'aide de techniques statistiques - Nouvelles techniques optroniques d'imagerie	4,35
COM: Composants Optiques Microstructurés	H. Rigneault	- Biophotonique - Micro et nano-composants optiques	8,68
TEM : Télédétection et Expérimentation en Micro-Ondes	M. Saillard	 Caractérisation d'un état de surface, notamment la surface de la mer Détection, localisation et caractérisation d'objets enfouis 	13,21
RCMO: Recherche en Matériaux, Composants et Technologies de Couches Minces Optiques	G. Albrand, M. Lequime	 Technologies DIBS, IAD, IP, EBD Développement de filtres accordables Renforcement de l'expertise dans le domaine de la synthèse 	9,48
GSM: Signaux Multidimensionnels	S. Bourennane	-Traitement du signal appliqué à l'imagerie spatiale et la vidéo - Traitement du signal appliqué à l'acoustique et la prévention des catastrophes naturelles	4,35
Administration	C. Amra	- Fonctionnement UMR	5,2

Sommaire

I - DI	ECTOIRE ET CONSEIL DE LABORATOIRE	_13
I.1.	Membres élus	13
I.2.	Membres nommés : responsables d'équipes	13
I.3.	Membre de droit	14
I.4.	Bilan des représentativités au Conseil de Laboratoire	
I.5.	Autres élus	15
I.6.	Autres membres nommés	
I.7.	Responsables DEA Optique, Image et Signal	
I.8.	Directoire et fonctionnement interne	17
I.9.	Candidature et élections à la direction de l'Institut pour le prochain quadriennal :	
Prop	sition du Conseil de Laboratoire (PV)	18
	RODUCTION GENERALE : POLITIQUE DE L'INSTITUT FRESNEL	
III -	EQUIPE CLARTE : BILAN SCIENTIFIQUE	
	Introduction	24
111,2	Les structures à Bandes Interdites Photoniques (BIP)	24
	1. Domaine optique	
	2.1.1. Etude théorique des phénomènes de réfraction anormale.	
	2.1.2. Contrôle de l'émission spontanée d'une source à l'intérieur d'un cr	ıstaı
	otonique27	•
	2.1.3. Réseaux de diffraction à cristaux photoniques.	
	2.1.4. Les fibres optiques à cristaux photoniques et les fibres optiques	
	crostructurées.	
	2.1.5. Forces sur les particules micrométriques. Téléscope géant de Laber	
c	staux photoniques ajustables optiquement, pinces optiques	_32
	2.1.6. Homogénéisation des cristaux photoniques, milieux effectifs	
III.	2. Domaine micro-ondes	34
	2.2.1. Travaux expérimentaux en micro-ondes	
	2.2.2. Conception d'antennes pour satellites	
	Les réseaux de diffraction	36
	1. Amélioration spectaculaire de la théorie différentielle	
III.	2. Etude des MOEMS (MicroOptoElectroMechanical Systems)	
III.	3. Phénomènes liés aux anomalies des réseaux	38
III.	4. Les réseaux en optique non linéaire	39
III.	5. Les réseaux et la métrologie	39
III.	6. Filtrage de la lumière et DWDM (Dense Wavelength Domain Multiplexing)). 39
III.	7. Collaborations industrielles	41
	Conclusion et prospectives	41
	Activités de rayonnement dans la communauté scientifique	41
III.6	Doctorants	43
III.	1. Doctorants presents au 01 septembre 02	43
III.		
	CLARTE: Production scientifique	45
III.	1. Publications dans revues internationales avec comité de lecture	45
III.		
III.	3. Conférences invitées dans des congrès internationaux	54

	Brevets	
	Chapitres dans ouvrages	
III.8. CLA	ARTE : Bilan financier Contrats de recherche référencés R3	58
III.8.1.		
III.8.2.		
III.8.3.	Opérations spécifiques CNRS	59
	E MAP2 : BILAN SCIENTIFIQUE	
IV.1. Intr	oduction	61
IV.2. La p	photonique de puissance	61
	Activité endommagement laser	
IV.2.1.	1. Mise en œuvre d'une métrologie fine de l'endommagement	61
IV.2.1.	2. Etude de l'initiation, la croissance des dommages et leur éve	ntuelle
réparat	ion 62	
IV.2.1.	3. Mise en évidence de nano-centres précurseurs de l'endommagement le	aser 63
	4. Développement d'outils non destructifs en vue de révéler les	
	seurs pour rétro-action sur la technologie de fabrication	
	5. Effet de tirs cumulés sur le seuil d'endommagement laser : condition	
	ilisation des composants	
	6. Etude du vieillissement des composants dans l'UV profond.	
	Activité optique non linéaire	
IV 2.2	1. Diffusion non linéaire du 2 nd harmonique.	66
IV 2 2	2. Mesure de n ₂ par une méthode de Z-Scan	67
	liffusion lumineuse	
IV.3.1.		
IV.3.2.	Applications télécoms	
IV.3.3.	Ellipsométrie sur champ diffus	
IV.3.4.	Interférométrie de speckle	
IV.3.5.	Analyse multi-échelle du speckle	
IV.3.6.	Caractérisation de poudres colorées intrinsèques	
	Poudres optiques multicouches	
IV 4 Les	capteurs d'image en technologie CMOS	72 73
IV.5. Con	clusion et prospective	73 74
IV.6. Ray	onnement/Diffusion de l'Information Scientifique/Compléments	, 75
	torants MAP2	
IV.7.1.	Doctorants présents au 01 Septembre 02	77
IV.7.2.		
	P2 : Production scientifique	
IV.8.1.	Publications dans revues internationales avec comité de lecture	80
IV.8.2.	Communications avec actes	82
IV.8.3.	Conférences invitées dans des congrès internationaux	
IV.9. MA	P2 : Bilan financier	87
IV.9.1.	P2 : Bilan financier Contrats de recherche référencés R3	 87
IV.9.2.	Contrats de recherche référencés C	
IV.9.3.	Opérations spécifiques CNRS	89
IV.9.4.	Subventions collectivités territoriales	89
IV.9.5.	Contrats européens	
	E P.H.Y.T.I. : BILAN SCIENTIFIQUE	
V.1. Déc	laration succincte de la politique scientifique	92
V.2. Prés	sentation des projets et prospective pour les 4 années à venir	92
V.2.1.	Thème 1 : Segmentation d'images à l'aide de techniques statistiques	
V.2.2.	Thème 2 : Nouvelles techniques optroniques d'imagerie	

V.2.3.	Conclusion sur les perspectives	104
V.3. Doct	torants PHYTI	107
V.3.1.	Doctorants présents au 01 Septembre 2002	107
V.3.2.	Thèses soutenues (99-02)	108
V.4. PHY	TTI : Production scientifique	109
V.4.1.	Publications dans revues internationales avec comité de lecture	109
V.4.2.	Communications avec actes	
V.4.3.	Conférences invitées dans des congrès internationaux	112
V.4.4.	Brevets	113
V.4.5.	Chapitres de livre	113
	TI: Bilan financier	
V.5.1.		
V.5.2.		
V.5.3.	1 1	
<i>VI -EQUIPE</i>	E COM: BILAN SCIENTIFIQUE	118
VI.1. Obje	ectifs de l'équipe	118
V1.2. Axe	1: Biophotonique	118
	Le contexte	
	Une équipe de recherche pluridisciplinaire	
	L'outil expérimental développé : La Microscopie de Corrélatio	
	ence	
	1. La technique FCS	
	2. Des structures photoniques pour 'modeler' la luminescence	
	Les points forts de notre recherche	
	1. Développement d'une plate forme expérimentale de biophoto	
	nant microscopie confocale et analyse de la diffusion par spectroscop	
	tion de fluctuation (Fluorescent Correlation Spectroscopy - FCS).	
	2. Démonstration de l'intérêt d'une structure photonique de type miroin	-
	rer la sensibilité et la précision des mesures de FCS.	
	3. Analyse des profils de vitesse par FCS pour des molécules luminescer	
depiaça	ant dans des microcapillaires.	_ 123
	4. Etude de la luminescence de nanocristaux individuels.	
	5. Etude de la diffusion de lipides et protéines marquées se déplaçant	
	ane de cellules animales.	
VI.2.5.	Collaborations:	
	2 : Micro - nano composants optiques	
	Contexte	
VI.3.2.	Les points forts	
VI.3.2.	· · · · · · · · · · · · · · · · · · ·	
	2. Filtres à bande passante étroite et à réjection spectralement étendue	
	ptique monomode	131
	3. Propriétés thermiques des couches minces optiques	
VI.3.2.4	$I \qquad I \qquad I \qquad I \qquad \qquad$	
VI.3.3.	\mathcal{E}	
VI.3.3.	1 1	
VI.3.4.	Structurations inférieures à la longueur d'onde	
VI.3.4.	1 1 1	
	2. Filtrage des ondes guidées pour les communications optiques	
VI.3.5.	4. Moyens de réalisation et de caractérisation de micro et nano - composar	
	npléments/rayonnement/diffusion de l'information scientifique torants COM	130 137

VI.5.1.	Doctorants présents au 01 Septembre 02	137
VI.5.2.	Thèses soutenues	138
	A: Production scientifique	
	ications dans revues internationales avec comité de lecture	
VI.7.1.	Communications avec actes	142
VI.7.2.	Conférences invitées dans des congrès internationaux	
VI.7.3.	Brevets	
VI.7.4.	Chapitres d'ouvrages	145
VI.7.5.	COM: Bilan financier	
VI.7.6.	Contrats de recherche référencés R3	146
VI.7.7.	Contrats de recherche référencés C	147
VI.7.8.	Opérations spécifiques CNRS	148
VI.7.9.	Opérations spécifiques Ministère	149
VI.7.10.	Subventions collectivités territoriales	150
VI.7.11.	Fonds européens	151
VII - EQU	IPE TEM: BILAN SCIENTIFIQUE	154
	sion par des surfaces rugueuses	
	Introduction	
VII.1.2.	Développement d'un code de référence	154
VII.1.3.	Télédétection océanique	155
VII.1.3	1. Modèle à 2 échelles	156
VII.1.3	2. Small Slope Integral Equation	158
VII.1.3		
VII.1.4.	Caractérisation des surfaces multi-échelles	
VII.1.5.	Etude des surfaces non Gaussiennes	162
VII.1.6.	Conclusion	162
VII.2.Diffr	raction Inverse	163
VII.2.1.	Introduction	163
VII.2.2.	Développement d'algorithmes	163
VII.2.2	1. Méthode de contour	164
VII.2.2	2. Méthode de domaine	166
VII.2.3.	Constitution d'une base de données expérimentale	166
VII.2.4.	Traitement du signal	
VII.2.5.	Perspectives	172
VII.3. Com	pléments/rayonnement/Diffusion de l'information scientifique	172
	orants TEM	173
VII.4.1.	Doctorants présents au 01 Septembre 02	173
VII.4.2.	Thèses soutenues (99-02)	
VII.5.TEM	I : Production scientifique	175
VII.5.1.	Publications dans revues internationales avec comité de lecture	175
VII.5.2.	Communications avec actes	177
VII.5.3.	Conférences invitées	178
VII.5.4.	Chapitres dans ouvrages	178
	I: Bilan financier	180
VII.6.1.	Contrats de recherche référencés R3	180
VII.6.2.	Contrats de recherche référencés C	180
VII.6.3.	Opérations spécifiques CNRS	181
VIII - EQ	QUIPE RCMO : BILAN SCIENTIFIQUE	183
VIII.1. I	ntroduction	183
VIII.2. I	Développement de nos moyens de fabrication	183
VIII.2.1.	Acquisition d'un nouveau bâti de technologie DIBS	183

VIII.2.2.	Modernisation de nos bâtis IAD et EBD	184
VIII.2.3.	Réalisation d'un Bâti IBS Billes	184
VIII.3. E	tudes technologiques	185
	Empilements métaux-diélectriques	
VIII.3.2.	Domaine IR	186
VIII.3.3.	Domaine UV	187
VIII.3.4.	Filtres spatialement variables	188
VIII.4. F	'iltres accordables	189
	Généralités	
VIII.4.2.	Dépôt de couches minces de Ta ₂ O ₅ piézoélectriques	189
	Accordabilité par contrainte mécanique transverse	
	'iltres à cavité substrat	
	Introduction	
VIII.5.2.	Filtres passifs	192
VIII.5.3.	Filtres actifs	194
VIII.6. F	'iltres Hybrides	196
	Introduction	
VIII.6.2.	Etude théorique	196
VIII.6.3.	Approche expérimentale	198
	Iodélisation	
VIII.7.1.	Synthèse automatique	198
VIII.7.2.	Déphaseurs achromatiques	200
	Compléments/rayonnement/diffusion de l'information scientifique	
	Ooctorants RCMO	201
VIII.9.1.	Doctorants présents au 01 Septembre 02	201
VIII.9.2.	, , , , , , , , , , , , , , , , , , , ,	
VIII.10.	RCMO : Production scientifique	
	. Publications dans des revues internationales avec comité de lecture	
	. Communications avec actes	
VIII.10.3	. Conférences invitées	
VIII.11.	RCMO: Bilan financier	
	. Contrats de recherche référencés R3	
	. Contrats de recherche référencés C	
VIII.11.3	. Opérations spécifiques CNRS	207
VIII.11.4.	. Opérations spécifiques Ministère	207
VIII.11.5	. Subventions collectivités territoriales	208
VIII.11.6	. Contrats et fonds européens	208
IX-EQUIPE	GSM: BILAN SCIENTIFIQUE	210
IX.1. I. Tra	aitement du signal appliqué à l'imagerie spatiale	211
IX.1.1.	I.1 Estimation de trajectoires et reconstruction d'images	211
IX.1.2.	Reconnaissance de formes et localisation dans des images multi-canales	212
IX.1.3.	Reconstruction de cubes objets à partir de données d'imagerie spectrale	213
IX.1.4.	Traitement statistique d'images	214
IX.2. II. Ti	raitement du signal appliqué à la vidéo	216
IX.2.1.	Indexation de bases d'images	
IX.2.2.	Classification de séquences d'images	
	tement du signal appliqué à l'acoustique et pour la prévention des catasti	
$naturelles_{-}$		219
IX.3.1.	Techniques de traitement du signal et d'acoustique pour l'observation du	milieu
marin	220	
IX.3.2.	Caractérisation de fonds marins par des techniques "non invasives"	221

IX.3.3.	Caractérisation de la surface de la mer	. 221
IX.3.4.	Détection et localisation de sources corrélées en mouvement	. 222
IX.4. Com	pléments	_224
		_225
IX.5.1.	Doctorants présents au 01 Septembre 2002	. 225
IX.5.2.		
IX.6. GSM	I : Production scientifique	_226
IX.6.1.	Publications dans des revues internationales avec comité de lecture	. 226
	Communications avec actes	
	VT FRESNEL : BILAN SUR LES ACTIVITES INTERNATIONALES	
	anisation de Congrès	_
X.2. Wor	shops	230
X.3. Accu	eil de chercheurs étrangers	231
X.4. Séjoi		
X.5. 5 ièn	ne PCRD	_231
X.6. Autr	es programmes européens et internationaux	_231
X.7. Autr	es collaborations avec publications (RICL ou Proc) communes	_232
X.8. Valid	lation de l'information scientifique	_232
X.9. 6 ^{ième}	PCRD (PIREX)	_232
XI -PROSPE	CTIVE GENERALE/INSTITUT FRESNEL	_234
XI.1. Prior	rités politiques/stratégiques	_234
XI.1.1.	L'hébergement de l'Institut sur un site unique	. 234
XI.1.2.	La confirmation et formation des jeunes chercheurs	. 235
XI.1.3.	Ecole doctorale	. 235
XI.2. Polit	ique Scientifique Européenne	235
XI.3. Polit	ique Scientifique Nationale	235
XI.4. Valo	risation et Partenariat Industriel	_237
XII - PROS	PECTIVES PAR EQUIPES DE L'INSTITUT (HORS 6 ^{IEME} PCRD) : BILAN	239
	RTE	
	22	
XII.3.PHY	TI	_240
XII.4.COM	Λ	_240
XII.5.TEM	[
XII.6.RCM	10	_241
XII.7.GSM	[_242
	SOINS EN FINANCEMENT ET RECRUTEMENTS	
	ustification des besoins de financement pour le prochain quadriennal	
	ustification des besoins de postes pour le prochain quadriennal	_244
XIV-AN	NEXE 1: LISTE COMPLETE DES PERSONNELS, BILAN	SUR
	T/FLECHAGE DE PERSONNELS ET DOCTORANTS, PROMOTIONS/REGULARISATI	ONS245
XIV.1. I	iste complète des personnels permanents	_245
XIV.2. I	Liste des doctorants et ATER	_249
XIV.3. I	iste des thèses soutenues	_253
XIV.4. B	Bilan doctorants avec fléchage	_255
XIV.5. H	Bilan recrutements et fléchage	_256
XIV.6. F	Bilan promotions/régularisations	_257
	EXE 2 : HYGIENE ET SECURITE	_258
	EXE 3: PLAN DE FORMATION DE L'UNITE	
	Formations suivies	
XVI.1.1.	Année 1999.	. 259
XVI.1.2.	Année 2000	. 259
XVI.1.3.	Année 2001	. 260
XVI.1.4.	Année 2002	. 261

XVI.2. Besoins en formation	_261
XVI.3. Priorités en formation	_261
XVII - ANNEXE 4: BILAN SUR HEBERGEMENT DE L'INSTITUT	262
XVII.1. Hébergement par ENSPM	262
XVII.2. Hébergement par UIII	
XVII.3. Hébergement UI	262
XVIII - INSTITUT FRESNEL : BILAN FINANCIER	264
XVIII.1. CNRS: Moyens annuels récurrents	_264
XVIII.2. Ministère : Moyens annuels récurrents	_265
XVIII.3. Fléchage des crédits récurrents sur les équipes	_266
XVIII.4. Opérations spécifiques CNRS/Ministère	_268
XVIII.5. Dotation CNRS Labintel	_270
XVIII.6. Dotation BQR UIII	_270
XVIII.7. Subventions collectivités territoriales	_271
XVIII.8. Contrats européens	_273
XVIII.9. Contrats de recherche référencés R3	_274
XVIII.10. Contrats de recherche référencés C	_276
XVIII.11. Récapitulatif	_279
XIX - LISTE COMPLETE DES PUBLICATIONS, CONFERENCES, BREVETS	ET
OUVRAGES	280
XIX.1. Publications dans revues internationales avec comité de lecture	_280
XIX.2. Conférences dans congrès internationaux avec actes	_296
XIX.3. Conférences invitées dans des congrès internationaux	_306
XIX.4. Chapitres et ouvrages	_310
XIX.5. Brevets	_312
XIX.6. Publications dans revues nationales avec comité de lecture	_312
XIX.7. Autres publications	_313
XIX.8. Autres conférences	_313

I - DIRECTOIRE ET CONSEIL DE LABORATOIRE

I.1. Membres élus

	COLLEGE	EQUIPE	
G. Albrand	ITA- Collège C (technique)	RCMO	
P. Bentoza	ITA- Collège C (administratif)	Administration	
P. Voarino	Doctorant (3 ^{ième} année)	MAP2	
S. Enoch	CR- Collège B	CLARTE	
L. Escoubas	MCF- Collège B	COM	
H. Tortel	MCF- Collège B	TEM	
H. Akhouayri	PR- Collège A	MAP2	
D. Maystre	DR- Collège A	CLARTE	

I.2. <u>Membres nommés : responsables d'équipes</u>

	COLLEGE	Resp. équipe
G. Tayeb	PR- Collège A	CLARTE
M. Saillard	PR- Collège A	TEM
P. Réfrégier	PR- Collège A	PHYTI
S. Bourennane	PR- Collège A	GSM
H. Rigneault	CR- HDR Collège B	COM
M. Commandré	PR- Collège A	MAP2
M. Lequime	PR- Collège A	RCMO

I.3. Membre de droit

C. Amra	DR- Collège A	Directeur	

Soit un total de 17 membres.

I.4. Bilan des représentativités au Conseil de Laboratoire

Thématique ou		Equipe		Effectifs
Composante				
Spécifique				
Cristaux	Enoch, Maystre,	CLARTE	3	14
Photoniques	Tayeb			
Endommagement	Akhouayri,	MAP2	2	7
et diffusion	Commandré			
Image et Signal	Réfrégier,	PHYTI/GSM	2	8
	Bourennane			
Optique Intégrée	Escoubas,	COM	2	8
et Biologie	Rigneault			
Télédétection et	Tortel, Saillard	TEM	2	13
micro-onde				
Couches Minces	Albrand, Lequime	RCMO	2	9
	•			
Doctorants	Voarino	X	1	X
Administration	Amra, Bentoza	Institut Fresnel	2	5,2

I.5. Autres élus

D. Maystre	Comité National				
G. Marchand	Comité National				
H. Akhouayri	Prés. Com. Spéc. 63 ième section				
G. Tayeb	Prés. Com. Spéc. 30 ième section				
M. Guillaume	Vice-Prés. CS 61 ième section				
M. Commandré	CA CREMSI				
M. Lequime	CS Pop Sud				
C. Amra	CA Pop Sud				
F. Flory	CA Pop Sud				
H. Giovannini	C.S. UIII				
N. Bertaux	UFR UIII				
S. Enoch	UFR UIII				
G. Tayeb	UFR UIII				
F. Forestier	UFR UIII				
P. Voarino	UFR UIII				
M. Lequime	C.A. ENSPM				
M. Commandré	C.A. ENSPM				
S. Bourennane	C.A. ENSPM				
C. Amra	C.A. ENSPM				
N. Bertaux	C.A. ENSPM				
T. Gaidon	C.A. ENSPM				
F. Lemarquis	C.A. ENSPM				
F. Lemarquis	C.A. ENSPM				

H. Akhouayri	CS* ENSPM
P. Réfrégier	CS ENSPM
C. Amra	CS ENSPM
F. Flory	CS ENSPM
M. Commandré	CS ENSPM
H. Giovannini	CS ENSPM
S. Huard	CS ENSPM
C. Deumié	CS ENSPM
T. Gaidon	CS ENSPM
H. Rigneault	CS ENSPM
F. Lemarquis	CS ENSPM
G. Albrand	CS ENSPM

^{*}CS non réélu depuis 99

I.6. <u>Autres membres nommés</u>

M. Commandré	UFR RST (UI)
P. Réfrégier	CNU (61 ^{ième}
r. Kenegiei	section)
G. Tayeb	CNU (63 ième
	section)
L. Escoubas	CPE ENSPM
F. Flory	CPE ENSPM

I.7. Responsables DEA Optique, Image et Signal

- P. Réfrégier, responsable du DEA OIS, responsable de l'option Image
- S. Huard, responsable de l'option Optique

I.8. <u>Directoire et fonctionnement interne</u>

Les membres du Conseil de Laboratoire et les élus UFR/CS (UIII) se réunissent en moyenne 2 fois par mois pour traiter l'ensemble des dossiers de l'Institut. Les compte rendus de réunion de ce Directoire sont diffusés et archivés. De façon plus générale, les procédures régissant le mode de fonctionnement interne de l'UMR sont consignées dans un *Document Administratif Spécifique* interne à l'unité, qui décrit :

- le circuit des signatures (direction, chef d'équipe, responsable de contrat, gestionnaire...)
- les autorisations de signature (contrat, subvention, demande d'achat, missions...)
- les procédures administratives spécifiques aux tutelles (ordres de mission CNRS/UIII/ENSPM/UI, demandes d'achat CNRS/UIII/ENSPM/UI, facturation/livraison...)
- les interfaces entre l'Institut et le monde extérieur (Comité National, CNU, SFO, DEA, tutelles régionales, Pop Sud, relations internationales...)
- les différentes missions au sein de l'Institut (chercheurs et étudiants étrangers, accueil stagiaires, site Web, gestion des carrières, formation, ACMO...)
- ...

Cette réglementation a pour but de garantir une verticalité/autonomie maximale aux responsables d'équipe et jeunes chercheurs, dans le respect du mode d'administration général du laboratoire.

I.9. <u>Candidature et élections à la direction de l'Institut pour le prochain quadriennal :</u>

Proposition du Conseil de Laboratoire (PV)

*Voir compte rendu ci-dessous

INSTITUT FRESNEL MARSEILLE

COMPTE RENDU

DE CONSEIL DE LABORATOIRE DU 26 SEPTEMBRE 2002

N° Session: 01

Date de convocation : diffusion générale à l'Institut par e-mail en note d'information n°68 le 12

septembre 2002

Lieu de réunion : Salle du troisième étage de l'ENSPM

Horaire: 18h-18H30

Ordre du jour : diffusé par e-mail en note d'information n°68 le 12 septembre 2002

Présents : M. Lequime, G. Tayeb, S. Enoch, H. Akhouayri, P. Réfrégier, P. Voarino, G. Albrand, D.

Maystre, H. Rigneault, L. Escoubas, P. Bentoza, M. Commandré, C. Amra

Absents: S. Bourennane, M. Saillard, H. Tortel

Procurations: H. Tortel à S. Enoch

1. Rappel de l'ordre du jour

L'ordre du jour est tout d'abord rappelé, conformément à la note d'information n° 68 :

- examen des candidatures à la direction de l'Institut pour le prochain quadriennal
- Renouvellement ou reconduction de la direction de l'Institut

2. Rappel de procédure

Suite à requête de précision, on rappelle la note d'information n° 67 diffusée à l'Institut le 12 septembre 2002, ouvrant au dépôt de candidatures à la direction de l'Institut auprès de Mme Juarez. Un e-mail a précédé la note 67, avec diffusion générale à l'Institut, en insistant quant à la transmission de l'information (ouverture à candidatures) auprès des personnels en déplacement ou susceptibles de ne pas recevoir cette information.

3. Examen des candidatures à la direction

Aucune candidature n'a été déposée, en dehors de celle de l'actuel directeur. On considère en conséquence qu'il n'y a pas lieu de débattre ce point plus avant.

4. Proposition de vote sur la reconduction du directeur actuel

Un rapide consensus est établi pour proposer un vote par oui ou non en réponse à la question suivante :

« Souhaitez-vous que le directeur actuel, Claude Amra, soit reconduit dans ses fonctions à la direction de l'Institut Fresnel pour le prochain Quadriennal (période 04-08) ? »

5. Résultat du vote

14 suffrages sont exprimés, représentatifs de 13 membres présents et d'une procuration. Le résultat du vote est examiné:

13 oui

1 non

C. Amra remercie le Conseil de la confiance qui lui est témoignée. La session est clôturée pour préparer l'ordre du jour du prochain directoire.

Rédigé par C. Amra le 26/09/02 Diffusé le 04/10/02

II - INTRODUCTION GENERALE : POLITIQUE DE L'INSTITUT FRESNEL

*Un bilan factuel détaillé est donné dans le document quadriennal (volet recherche) de l'Institut, et pourra être consulté si nécessaire pour compléter les aspects non scientifiques. Un document Administratif Spécifique décrit également le fonctionnement interne de l'unité.

L'Institut Fresnel est né de fait en 1999, dans la volonté d'une réorganisation sur le campus de Marseille Nord, des Sciences et Technologies de l'Optique, l'Electromagnétisme et l'Image. Cette création d'UMR à partir de deux UPRES-A et d'une JE d'excellence, a reçu une reconnaissance officielle au 01 Janvier 2000 avec pour tutelle de rattachement l'Université d'Aix-Marseille, l'Ecole Nationale Supérieure de Physique (hébergeant les 2/3 des équipes) jouant le rôle d'organisme gestionnaire, et l'Université de Provence celui d'autre tutelle secondaire.

De façon générale, une mission première de l'Institut consiste à inventer, réaliser et caractériser des objets ou distributions d'objets capables de contrôler la lumière ou les ondes, à l'aide d'une approche déterministe, phénoménologique ou stochastique. Ces objets peuvent être multidimensionnels et périodisés selon des axes privilégiés, et sont désignés, selon leur géométrie et la position de la source primaire ou secondaire, par fibres ou cristaux photoniques, microcavités, boîtes quantiques, réseaux de diffraction et empilements de couches minces... Dans le cas d'un objet ou d'une distribution aléatoire, le contrôle ou la prédiction du diagramme d'émission passe par la maîtrise des surfaces rugueuses et volumes hétérogènes, inclusions de billes et autres poudres optiques à spectre coloré intrinsèque ou artificiel... Les applications concernent l'espace libre (champ proche et lointain) ou modal (planaire, fibré, plot quantiques), et associent les champs d'expertise de l'optique instrumentale, l'électromagnétisme et la physique mathématique, la photonique de puissance, la bio-photonique, les matériaux amorphes ou cristallins sous forme de substrats et couches minces... L'ensemble des outils théoriques ou expérimentaux, ou technologiques, qui ont été développés à l'Institut au cours de ce premier quadriennal, ont ainsi permis d'asseoir la réputation de l'Institut quant à la conception et la mise au point de micro-composants capables de modifier pratiquement à volonté les paramètres régissant les propriétés de la lumière (spectres VUV, PIR et MIR, confinement/exaltation/inhibition, cohérence spatiale et temporelle, durée de vie et compression, absorption, front d'onde et déphasage polarimétrique, localisation spatiale, ultra-réfraction...).

Parallèlement le traitement d'images et signaux optiques scalaires ou vectoriels (polarimétriques) constitue une priorité forte au sein du laboratoire, en particulier dans le domaine optronique où les techniques d'imagerie active ou passive, polarimétriques et hyperspectrales, prennent un essor considérable. Les algorithmes rapides de segmentation et

détection de contours, d'identification et reconnaissance de cible ou forme en milieu bruité, l'analyse multidimensionnelle et l'holographie numérique, sont autant de domaines où l'institut occupe une place de premier plan sur la scène internationale. Enfin, l'ensemble des outils développés est systématiquement étendu ou complété dans le domaine micro-onde, où le sondage électromagnétique couplé à la résolution de problèmes inverses apporte des solutions nouvelles et pertinentes pour la localisation d'objets enfouis ou la caractérisation de milieux aléatoires. Les méthodes de type DORT ont été largement exploitées en association avec notre chambre anéchoïque, ainsi que les approximations de type impédance pour la scrutation des océans.

La politique scientifique de l'institut a ainsi été mise en œuvre à l'aide d'une structuration sous forme de 6 équipes de recherche, que nous avons voulu promouvoir conjointement pour accroître la richesse ou diversité thématique du laboratoire, source de projets ou d'idées pluridisciplinaires :

- CLARTE: contrôle de la lumière et analyse du rayonnement- traitement électromagnétique
- MAP2 : milieux aléatoires et photonique de puissance
- PHYTI : physique et traitement de l'image
- COM: composants optiques microstructurés
- TEM : télédétection et expérimentation en micro-ondes
- RCMO : recherche en matériaux, composants et technologies de couches minces optiques

Plus récemment, et dans le but d'élargir ou enrichir la composante signal et image à une communauté plus proche de l'environnement, la sismique, l'acoustique ou les catastrophes naturelles, nous avons créé en septembre 2001 une septième équipe, intitulée Groupe Signaux Multidimensionnels (GSM)... On trouvera les bilans scientifiques de chacune des équipes du laboratoire dans les pages suivantes. Du point de vue de la synergie interne à l'Institut, il faut signaler la richesse des projets transverses fédérant plusieurs composantes au sein du laboratoire, dans le domaine des télécommunications optiques (filtrage actif et passif de type DWDM, par structures cristallines ou amorphes, mono ou tri-dimensionnelles, en optique libre ou planaire...), de la bio-photonique (exaltation et inhibition de l'émission spontanée ou luminescence pour le traçage d'objets biologiques, spectroscopie de corrélation de fluorescence), ou de la physique de l'image optique/électromagnétique (méthodes électromagnétiques ou de traitement d'images associées à l'imagerie micro-ondes et ses problèmes inverses)...

Le succès général de ces opérations est sans commune mesure avec le bilan antérieur relatif aux ex-laboratoires ayant servi de ciment à la création de l'institut, si l'on en juge de la production politique (représentativité), scientifique (192 publications RICL et 110 communications internationales) et financière (35 MF ou 5,3 Meuros sur la période), du

recrutement (28% d'accroissement), diffusion de l'information scientifique et valorisation qui en ont découlé :

- recrutement et promotion de plusieurs Professeurs, Maîtres de Conférences, Chercheurs, Ingénieurs, Techniciens et Administratifs, accueil de nombreux Doctorants, délégations au CNRS...
- participation à 3 comités de pilotage CNRS de Réseaux Thématiques Pluridisciplinaires nationaux, et pilotage d'Actions Spécifiques Ministérielles
- construction d'un Groupement de Recherche réunissant l'ensemble des acteurs français dans le domaine des ondes (plus de 1000 chercheurs)
- nombreuses opérations spécifiques de type ACI, ACO, PJE, PAI, EPML...
- présence de 3 membres nommés au Conseil National des Universités, élection de 2 membres au Comité National de la Recherche Scientifique, 1 membre nommé au Conseil CNRS de Département pour la création du CNRSTIC, 5 membres élus à l'UFR Recherche Scientifique et Technique de l'UIII...
- importantes subventions du CNRS, Ministère, Conseils Régional et Général, Ville de Marseille, financements européens conséquents (FEDER)...
- participation à 17 propositions de Réseaux d'Excellence Européens ou Projets Intégrés
- organisation de 3 congrès internationaux dans différents domaines scientifiques
- création de l'association Pôle Optique et Photonique du Sud, en partenariat avec
 l'Astronomie et l'Industrie PACA
- invention et mise en place du premier Master Européen en Optique, jusqu'à création par l'ENSPM
- " génération " de 5 start-up, dans les domaines de l'image, des télécommunications et de l'éclairage
- création d'une équipe à l'interface de l'Optique et la Biologie
- nombreuses publications et citations, qui demeurent un critère majeur...

La réussite de l'Institut est en premier lieu le résultat direct des politiques scientifiques menées au sein de chaque équipe, grâce à une forte verticalité dans notre mode de fonctionnement interne. Nous présentons ci-après les programmes scientifiques par équipes.

EQUIPE CLARTE: EFFECTIFS

Nom, prénom	Date de naissance	Corps, grade	Section CNU ou CNRS	HDR	Date d'arrivée dans l'unité	Etablissement	% Affectation
CHAUMET Patrick	janv-71	MC	30		oct. 00	UIII (I.U.T.)	1.00
DARMANIAN Serguei	mars-53	PAST	30	Х	mai-99	U III	0.58
LASQUELLEC Sophie	nov-71	MC	63		oct00	UIII (I.U.T.)	1.00
NEVIERE Michel	juil-45	PR0	30	X	jan. 76	Univ. Provence	1.00
PETIT Roger		PrCE	30	X		UIII	0.15
POPOV Evgueni	juin-56	PR1	30	X	juin-93	Univ. Provence	1.00
RENVERSEZ Gilles	déc-69	MC	30		sept. 99	U III	1.00
STOUT Brian	sept-62	MC	30		nov. 00	Univ. Provence	1.00
TAYEB Gérard	nov-59	PR2	30	X	oct. 85	U III	1.00
VINCENT Patrick	sept-45	PR1	30	X	jan. 76	U III	0.50
ZOLLA Frédéric	avr-63	MC	30		oct. 89	Univ. Provence	1.00
ENOCH Stefan	1/5/70	CR2	section 8		oct. 00	C.N.R.S.	1.00
MAYSTRE Daniel	1/3/45	DR1	Section 8	X	jan. 76	C.N.R.S.	1.00
NICOLET André	janv-62	PR2	63	X	janv. 00	U III	0.50
GEFFRIN Jean- Michel	31/10/65	IR2	08		nov. 02	CNRS	0.50
FORESTIER Frédéric	15/1/69	IE	BAP VI		sept. 00	U III	0.50
SENTENAC Anne	1/7/66	CR1	section 8	X	nov. 97	C.N.R.S.	0.50

Soit, en effectif temps plein (hors administration) : 13,95 dont 2,5 chercheurs CNRS,1 délégation CNRS et 9 HDR

III - EQUIPE CLARTE: BILAN SCIENTIFIQUE

III.1. Introduction

Les recherches de l'équipe CLARTE se sont réparties sur deux grands thèmes: les structures à Bandes Interdites Photoniques (BIP) et les réseaux de diffraction, le premier ayant occupé la plus grande partie de nos études.

III.2. Les structures à Bandes Interdites Photoniques (BIP)

Nos recherches sont principalement orientées vers les BIP dans le domaine optique. Néanmoins, dans le domaine micro-onde, une étude importante a été consacrée aux antennes à cristaux photoniques, en collaboration avec ALCATEL SPACE INDUSTRIES, sur des applications liées aux communications par satellite. Des travaux théoriques ont été suivis par la réalisation et la caractérisation au sein de l'Institut Fresnel de maquettes d'antennes.

Nous rappelons que nos principaux outils numériques sont issus de méthodes rigoureuses utilisant les équations de Maxwell et les mathématiques. Toutefois, dans le cas des cristaux métalliques tri-dimensionnels, nous avons dû quelquefois, compte tenu de l'énorme difficulté du problème, nous résoudre à utiliser l'approximation de Harrington. Celleci permet néanmoins d'obtenir, dans nos cas de figure, une précision très satisfaisante.

III.2.1.Domaine optique

On distingue les thèmes suivants:

III.2.1.1. Etude théorique des phénomènes de réfraction anormale.

On emploie le terme "réfraction anormale" quand un cristal photonique, structure inhomogène, est capable de simuler les propriétés optiques d'un matériau homogène que l'on ne peut trouver dans la nature. On donne alors au cristal un indice effectif. On distingue deux cas, l'ultra-réfraction, dans lequel l'indice effectif est proche de zéro, et la réfraction négative dans lequel il est négatif. Dans la réfraction négative, on évoque aussi les matériaux dits "de la main gauche" qui ont récemment créé des discussions polémiques. Nous décrirons aussi quelques applications de ces nouveaux matériaux: microprismes, microlentilles, lentilles parfaites à bords plats.

La figure 1, obtenue à l'aide d'un code rigoureux, donne l'évidence numérique du phénomène d'ultra-réfraction. Le faisceau incident, se propageant du haut vers le bas dans la partie supérieure de la figure, crée avec le faisceau spéculairement réfléchi par la face supérieure du cristal un système d'ondes stationnaires. Le fait notable est que le faisceau transmis est décalé vers la droite par rapport au faisceau incident, l'angle de réfraction pouvant être grossièrement évalué à 45°. Ainsi, l'indice effectif du cristal est très inférieur à

l'unité. On peut noter l'existence d'un second faisceau réfléchi, engendré par la réflexion du faisceau transmis à l'intérieur du cristal sur la face inférieure de celui-ci.

La figure 2 donne la carte de champ sur le même cristal, mais éclairé sous une incidence de 40°. Cette fois, l'indice effectif est négatif et on évoque le phénomène de réfraction négative. Ainsi, ce cristal est optiquement anisotrope.

Ces deux phénomènes ont été complètement expliqués et prévus théoriquement en faisant appel à la notion de courbe de dispersion tridimensionnelle des modes de Bloch du cristal photonique. Le calcul rigoureux de la dispersion de ces modes de Bloch permet d'évaluer avec grande précision l'indice effectif.

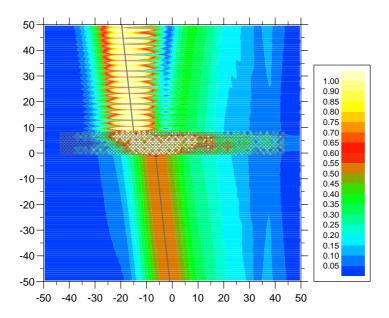


Figure 1: Module du champ électrique sur un cristal photonique bidimensionnel fait de tiges diélectriques de rayon 0.475 µm et d'indice optique 3, assemblées selon un dispositif périodique à symétrie carrée de période 1.27 µm. Le cristal est éclairé par un faisceau gaussien de longueur d'onde 2.55 µm sous une incidence de 6.4°.

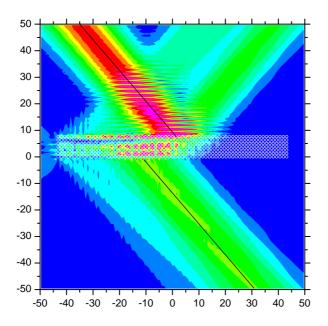


Figure 2: identique à la figure 1, mais pour une incidence de 40°

Nous avons par ailleurs pu remarquer qu'en se rapprochant du bord d'un gap du cristal, l'indice effectif pouvait tendre vers 0 en module, le cristal devenant alors optiquement isotrope. Cette remarquable propriété nous a permis de proposer la fabrication d'une micro-lentille à cristal photonique utilisant l'effet d'ultra-réfraction. Cette lentille, représentée sur la figure 3, est taillée dans le cristal photonique décrit précédemment. Elle est éclairée verticalement par un faisceau limité se dirigeant vers le bas, mais cette fois à la longueur d'onde de 2.56 µm, plus proche du bord du gap. On constate l'existence d'un foyer placé à une distance de 53µm de la lentille. Un calcul basé sur l'utilisation des courbes de dispersion prévoit un indice effectif de 0.086, et un foyer placé à une distance de 55µm de la lentille. Il est très remarquable de constater que la distance focale est de l'ordre de la vingtaine de longueurs d'onde, conséquence de l'énorme contraste d'indice (supérieur à 10).

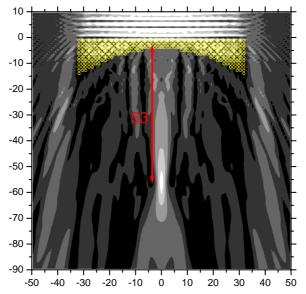


Figure 3: Une lentille plan-concave convergente!

Plusieurs autres applications sont envisagées, qui ont fait l'objet de nos calculs, en particulier la fabrication de micro-prismes à cristal photonique à dispersion géante.

Plus récemment, nous nous sommes intéressés aux matériaux "de la main gauche" évoqués par J.B. Pendry (J.B. Pendry, Phys. Rev. Lett. **86**, 3966 (2000)). Ces matériaux, décrits à l'origine par une permittivité et une perméabilité relatives égales à -1, possèdent des propriétés remarquables: le trièdre vecteur d'onde-champ électrique-champ magnétique d'une onde qui s'y propage est indirect et par conséquent la vitesse de phase est opposée à la vitesse de groupe. Son indice effectif est égal à -1. Il faut noter que depuis peu, les spécialistes de cristaux photoniques considèrent que, dans les conditions de la figure 2, le cristal est lui aussi un matériau de la main gauche. Cette remarque n'est pas anodine si on sait que le cristal proposé par Pendry est métallo-diélectrique et que sa construction dans le domaine visible semble actuellement impossible, contrairement à celui de la figure 2. Nous avons été les premiers à montrer que les cristaux photoniques diélectriques classiques pouvaient être des matériaux de la main gauche.

Enfin, nous avons très récemment démontré rigoureusement et analytiquement une propriété prévue heuristiquement par Pendry: un matériau de la main gauche permet d'envisager la fabrication d'une lentille convergente parfaite (sans tache d'Airy) à bords plats. Cette démonstration à été soumise à Phys. Rev. Letters.

III.2.1.2.Contrôle de l'émission spontanée d'une source à l'intérieur d'un cristal photonique

Nous avons récemment mené des travaux dans le domaine de l'extraction de la lumière produite par des sources optiques. En exploitant les propriétés spécifiques des cristaux photoniques, nous avons montré qu'il est possible d'augmenter de manière impressionnante

l'émission spontanée de sources localisées dans un cristal photonique tridimensionnel (figure 4), tout en concentrant la lumière émise dans un angle solide très étroit (figure 5). Nos derniers résultats théoriques montrent que par rapport à une source en espace libre, la puissance émise totale peut être augmentée d'un facteur 34 (ou, vu sous un autre angle, la durée de vie de l'atome excité émetteur peut être diminuée d'autant), et la puissance émise dans la direction privilégiée peut être augmentée d'un facteur 74000. Ces résultats constituent une avancée fondamentale vers la conception de nouveaux types d'émetteurs optiques (application aux LEDs et lasers à semi-conducteurs à haut rendement).

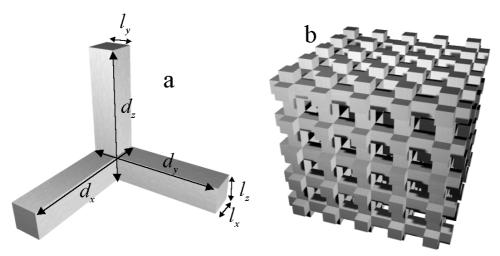


Figure 4: A gauche: maille élémentaire du cristal 3D représenté à droite. La source ponctuelle (dipôle) est placée à l'intérieur du cristal de droite.

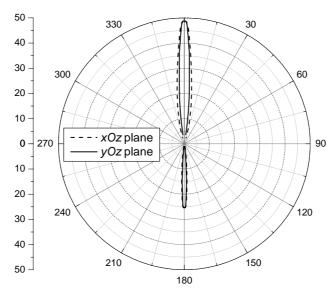


Figure 5: Diagramme de rayonnement du dipôle placé dans le cristal.

La puissance émise vers le haut est 220 fois plus grande que celle émise vers le bas, ce facteur pouvant aisément être modifié en changeant les caractéristiques du cristal.

La puissance totale émise est 34 fois supérieure à celle émise par le même dipôle placé dans le vide.

III.2.1.3. Réseaux de diffraction à cristaux photoniques.

Les cristaux photoniques permettent aussi d'élaborer des réseaux de diffraction d'une nouvelle génération. Telle est la conclusion de plusieurs études menées au laboratoire. Ces réseaux possèdent aussi le fameux "effet de blaze" en montage de Littrow (ordre -1 dans la même direction que l'onde incidente et en sens opposé), autrement dit, ils sont capables d'atteindre une efficacité de 100% pour une longueur d'onde donnée. La figure 6 montre un schéma d'un réseau à cristal photonique. Celui-ci est formé de galeries d'air parallèles percées dans un bloc de diélectrique. le cristal photonique est surmonté d'une rangée de trous de plus grand diamètre pouvant avoir une période multiple (ici double) de la période du cristal. La présence du cristal permet, si on se trouve à l'intérieur d'un gap, de réfléchir la lumière tandis que la rangée supérieure assure l'existence de deux faisceaux réfléchis, l'ordre -1 étant dispersif.

Il est très important de noter que ce nouveau type de réseau, découvert au laboratoire, pourrait, avec la progression de la technologie des cristaux photoniques, supplanter les performances des réseaux classiques et holographiques: ces derniers, recouverts de métaux, absorbent une fraction du faisceau incident de l'ordre de quelques pour cents, ce qui n'est pas le cas du réseau à cristal photonique. Ces quelques pour cents ont, dans beaucoup d'applications des réseaux (en particulier pour le multiplexage optique) des conséquences désastreuses.

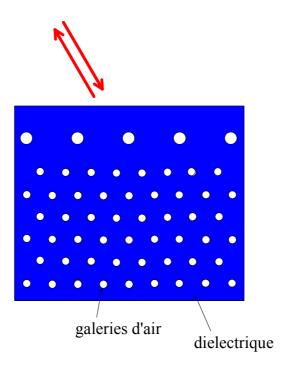


Figure 6: réseau à cristal photonique

III.2.1.4.<u>Les fibres optiques à cristaux photoniques et les fibres optiques microstructurées.</u>

En collaboration avec ALCATEL Marcoussis, l'IRCOM Limoges, l'équipe du Pr. McPhedran de l'université de Sydney, nous avons développé une étude théorique et numérique des fibres optiques à cristaux photoniques. Pour nos échanges, nous avons bénéficié d'un PICS du CNRS en 2001 et 2002, un de nos doctorants bénéficiant d'une cotutelle de thèse entre l'Institut Fresnel et l'Université de Sydney. Un contrat est à la signature avec ALCATEL Marcoussis.

La figure 7 montre deux clichés de telles fibres. La fibre à cristaux photoniques a un coeur creux et le confinement de la lumière y est assuré par la présence d'un gap du cristal. A l'inverse, la fibre microstructurée a un coeur de silice et on dit généralement que le confinement est assuré par la réflexion totale interne entre le coeur plein et l'environnement d'indice moyen inférieur.

L'utilisation de nos codes a permis d'entreprendre l'optimisation de ces structures.

Le code, développé en commun avec les australiens, semble être aujourd'hui le plus performant au monde. Il est à notre connaissance le seul qui soit capable de calculer les pertes dans la transmission et l'étude numérique permet aujourd'hui d'optimiser ces structures en termes de dispersion et de pertes.

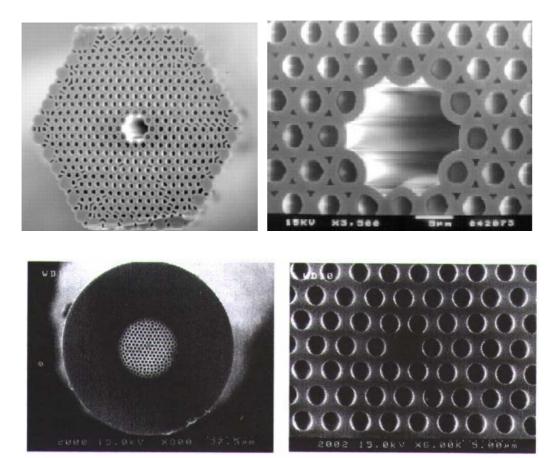


Figure 7: Partie supérieure: fibre à cristaux photoniques: photographies de Craigan et al. (Science 1999). Partie inférieure: fibre optique micro-structurée:photographies de Kubota et al. (CLEO 2001)

La figure 8 donne la courbe de dispersion d'une fibre optique microstructurée pour diverses valeurs de la période du cristal. Quand la période augmente, la dispersion tend évidemment vers celle de la silice. Pour de plus faibles valeurs, la courbe de dispersion devient plus oscillante, la dispersion décroissant notablement autour de 1.55µm. On peut noter, pour une période de 2.675 µm, une courbe assez plate au voisinage de 1.55µm, ce qui est intéressant pour les communications optiques. Pourtant, ces fibres ne sont pas utilisables car leurs pertes sont plusieurs milliers de fois supérieures à celles des fibres optiques classiques (0.1dB/km). On voit ici l'intérêt capital du calcul des pertes! A ce jour, nos meilleurs résultats ont été obtenus avec des fibres contenant des galeries de diamètres variable, faibles à l'intérieur de la fibre et plus grands à l'extérieur. L'optimisation est en cours mais il semble bien que ce type de dispositif soit le plus performant.

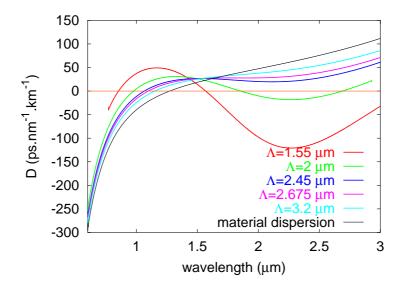


Figure 8 : Dispersion d'une fibre optique microstructurée formée par trois anneaux de galeries (19 galeries en tout) de diamètre 0.8 µm, pour différentes valeurs de la période du cristal

Un modèle "éléments finis" a également été mis au point pour l'étude des guides d'onde en général et des fibres optiques microstructurées en particulier. La comparaison des résultats avec le code décrit ci-dessus indique une parfaite concordance, ce qui fournit une validation supplémentaire pour les méthodes. Un des avantages de la méthode des éléments finis est la grande souplesse avec laquelle on peut modéliser diverses géométries ce qui devrait permettre l'étude de trous non circulaires. Dans un futur proche, cette méthode devrait permettre également d'étudier la torsion des fibres en restant dans le cadre d'un modèle bidimensionnel. Cette torsion qui semble inévitable en pratique semble être un des principaux écueils barrant la route à l'utilisation industrielle de telles fibres.

III.2.1.5. Forces sur les particules micrométriques. Téléscope géant de Labeyrie, cristaux photoniques ajustables optiquement, pinces optiques

Une nouvelle action a vu le jour en 2001: l'étude de la fabrication de structures optiques par piégeage de particules micrométriques dans un champ d'interférences. Cette idée originale d'A. Labeyrie, astronome et Pr. au Collège de France, a conduit celui-ci à proposer le concept de télescope spatial géant. Un système d'interférences produit par des lasers maintiendrait des particules micrométriques sur un paraboloïde dont la taille pourrait dépasser la centaine de mètres. Ce système, capable de réfléchir une partie de la lumière au foyer du paraboloïde, constituerait un télescope d'une puissance très supérieure aux plus grands télescopes actuels. A. Labeyrie nous ayant demandé d'appuyer la partie du projet relevant de l'optique électromagnétique, nous avons pu lui faire observer que la même idée pourrait conduire à la construction de cristaux photoniques ajustables, engendrés eux aussi par le piégeage de particules dans un champ d'interférences.

Ce projet futuriste et fascinant, qui rassemble entre autres l'Institut Fresnel, l'observatoire de Haute Provence, le Rowland Institute (Cambridge, Ma), l'Institut Non Linéaire de Nice, le Bryn Mawr College, Boeing et la Rice University fait l'objet d'un soutien financier de la NASA, dans le cadre du projet TPF (Terrestrial Planet Finder) qui se propose d'étudier l'existence de vie organique dans l'univers. Bien entendu, l'appui de la NASA ramène le projet au seul sujet du télescope géant mais nous espérons que ce soutien nous permettra en rebond d'obtenir un soutien d'institutions européennes et françaises pour la partie du projet concernant les cristaux photoniques. Notre travail consiste à modéliser la trajectoire de particules micrométriques placées dans un champ d'interférences et à rechercher les conditions dans lesquelles elles tendent vers un état stable. Les premiers résultats numériques viennent d'être obtenus et nous nous trouvons dans la phase de validation des résultats. Ceuxci devraient aussi permettre de mettre en évidence le phénomène de "binding", observé expérimentalement au Rowland Institute: deux particules micrométriques placées dans un champ électromagnétique ont tendance à se placer à une distance relative égale à un nombre entier de longueurs d'onde.

Parallèlement, d'autres études viennent d'être engagées sur le thème des pinces optiques. Les pinces optiques sont un nouvel outil puissant de la nanotechnologie qui a déjà trouvé un grand nombre d'applications dans diverses technologies concernant des petites particules (100nm à 100µm): biologie, microélectronique, sciences des surfaces et l'optique. De nombreuses applications ont déjà vu le jour, notamment en biologie où l'utilité de piéger, déplacer, et plus généralement manipuler des objets cellulaires et sub-cellulaires sont claires. De nombreuses autres applications en chimie et sciences des surfaces ont également vu le jour, et des études sur la fabrication de structures micrométriques sont en cours.

L'essor de ces applications est néanmoins partiellement freiné par le coût des dispositifs de pointe (optiques et laser) employés pour les pinces et la lévitation optique. Cette difficulté est encore plus accentuée dans le domaine de la « matière optique » où les dispositifs sont encore plus complexes. Cette observation souligne le besoin actuel de modélisations fiables dans la conception de nouveaux appareils.

Nous allons calculer les forces optiques sur de petits objets en employant des méthodes exactes traitant de l'interaction de la lumière avec une ou plusieurs sphères placées dans l'espace ou reposant sur un plan.

III.2.1.6. Homogénéisation des cristaux photoniques, milieux effectifs

Une partie très mathématique de nos travaux est consacrée à la théorie de l'homogénéisation, qui permet d'associer à une structure très complexe tel qu'un cristal photonique un milieu effectif homogène. En dépit de la complexité des théories sous-jacentes, le jeu en vaut la chandelle, compte tenu des simplifications entraînées par les résultats. Ces travaux sont de nature essentiellement mathématique, et il n'est donc pas question de les

décrire dans ce rapport. Il est à noter que ces travaux, effectués en collaboration avec le LASMEA de Clermont-Ferrand et la jeune équipe de Toulon dirigée par G. Bouchitté, viennent d'obtenir un financement dans le cadre du programme MathSTIC (projet "Théorie et modélisation numérique des métamatériaux").

III.2.2.Domaine micro-ondes

III.2.2.1.Travaux expérimentaux en micro-ondes

Parallèlement à nos travaux théoriques sur les cristaux photoniques, nous nous sommes préoccupés de la confrontation avec des mesures expérimentales, et de la coordination avec le groupe de mesures en micro-ondes de notre Laboratoire. Ce groupe dispose d'une chambre anéchoïque, ce qui nous a permis de réaliser une enrichissante confrontation entre les approches théoriques et expérimentales. Notre collaboration avec Alcatel (alinéa suivant) s'appuie fortement sur les mesures que nous menons dans cette chambre anéchoïque.

III.2.2.2.Conception d'antennes pour satellites

Nous avons exploité nos avancées dans le domaine de la réalisation de sources directives dans le cadre de contrats avec Alcatel Space Industries, pour la conception d'antennes satellite compactes et de grande directivité, destinées à remplacer les paraboles actuelles. Il s'agit d'un travail à la fois théorique et expérimental.

Les antennes que nous avons conçues sont constituées d'empilements de grilles métalliques espacées par de la mousse Rohacell de très faible densité (figure 9). Leur conception est basée sur plusieurs principes différents selon les usages auxquels nous les destinons. Les principaux atouts de ces antennes sont leur forme plane et peu épaisse (environ 2 longueurs d'onde), leur légèreté, l'utilisation d'une seule source excitatrice (donc pas d'électronique complexe, ce qui est le cas pour les antennes basées sur des réseaux de sources, dont les phases doivent être rigoureusement contrôlées).

Un des fils conducteurs que nous avons utilisé consiste à utiliser les propriétés des cristaux photoniques. Un empilement régulier de grilles métalliques croisées constitue en effet un cristal photonique possédant un gap en basse fréquence (propriété de filtrage basse fréquence des grilles métalliques). Pour des longueurs d'onde au voisinage de ce gap, on montre que le cristal a des propriétés de filtrage spatial du champ émis, en ce sens que seule l'émission dans un angle solide étroit est permise. On peut ainsi réaliser une antenne plate très directive, mais de faible bande passante (Figures 10 et 11).

Figure 9: A gauche: schéma d'une antenne constituée de 6 grilles métalliques espacées par de la mousse (en gris), disposée sur un plan de masse métallique (plan du dessous de la figure), et alimentée par un monopole disposé entre les grilles 3 et 4. A droite: photo de l'antenne réalisée. La face d'émission de l'antenne s'inscrit dans un carré de 23 cm de côté, soit 10 longueurs d'onde.

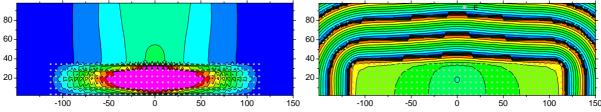


Figure 10 : Modélisation montrant le module du champ émis (à gauche, et les lignes équiphase de ce champ (à droite). On notera la variation très lente de la phase à l'intérieur du cristal photonique (très faible indice effectif, à rapprocher des propriétés d'ultraréfraction commentées plus haut) ainsi que l'excellente planéité des lignes équiphase, qui conditionne la directivité de l'antenne.

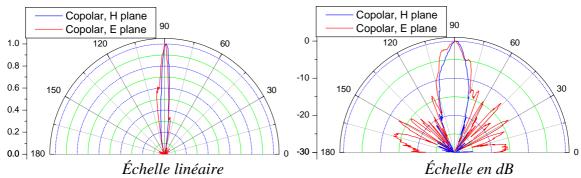


Figure 11: Diagramme de rayonnement de l'antenne, mesuré dans notre chambre anéchoïque.

Nous nous sommes également intéressés à un autre type d'antennes (antennes DRA : Direct Radiating Array) de dimensions plus réduites (la face d'émission s'inscrit dans un côté de 6 cm de côté, soit $2.8\,\lambda$). Dans ce cas, nous cherchons à obtenir une directivité maximale dans une plage de longueurs d'onde plus élevée (bande passante de 5%). Nous nous sommes alors orientés vers une structure comportant deux grilles métalliques disposées au voisinage d'un plan de masse, la source étant ici constituée par un patch. La structure présente schématiquement l'aspect de la figure 12:

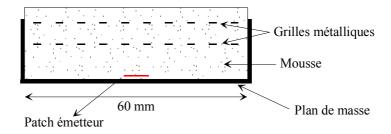


Figure 12: Schéma de l'antenne.

Pour obtenir le fonctionnement optimal de cette antenne, nous avons optimisé numériquement les largeurs des pistes métalliques des deux grilles, dont le rôle est de modeler convenablement le module et la phase du champ émis. La figure 13 illustre le résultat obtenu. Nous obtenons finalement un lobe d'émission de largeur inférieure à 10 degrés sur une plage de fréquences $\Delta\omega/\omega$ de 5%, ce qui est remarquable pour une antenne de cette dimension.

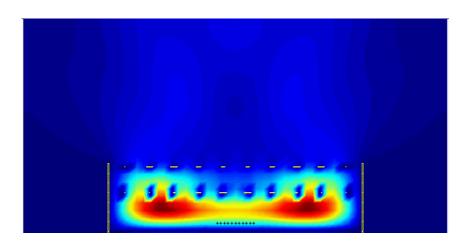


Figure 13: Module du champ rayonné par l'antenne.

III.3. Les réseaux de diffraction

Ces instruments, utilisés depuis des siècles, sont très présents dans les applications modernes de l'optique

III.3.1.Amélioration spectaculaire de la théorie différentielle.

Rappelons que la théorie différentielle des réseaux, développée dans notre équipe à la fin des années 60, est considérée comme une des grandes méthodes de référence dans ce domaine. Une nouvelle formulation de la méthode différentielle a été proposée récemment. Elle permet de traiter le cas des réseaux profonds, y compris dans le cas de polarisation TM qui posait auparavant de sérieux problèmes. L'amélioration est spectaculaire. La formulation proposée est basée sur une nouvelle écriture des équations à intégrer numériquement. Elle utilise les propriétés des séries de Fourier tronquées des produits continus et discontinus de fonctions discontinues. En l'absence de troncation numérique, notre formulation est équivalente à la méthode différentielle classique, mais la troncation impose l'utilisation de théorèmes mathématiques peu connus des opticiens. La nouvelle formulation est caractérisée par une vitesse de convergence en polarisation TM égale à celle du cas TE. Elle permet de traiter numériquement les réseaux diélectriques et métalliques de modulation supérieure à 100% et ayant des profils de sillons variés : réseaux sinusoïdaux, lamellaires, trapézoïdaux, échelettes, réseaux de tiges. Les perspectives de l'utilisation de la méthode différentielle ouvertes par cette formulation sont énormes et concernent tous les domaines des réseaux classiques, croisés, anisotropes ainsi que les cristaux photoniques, où une modélisation numérique performante de la polarisation TM est indispensable. Actuellement la méthode est en cours de généralisation en optique non-linéaire.

Une étude numérique de l'approximation d'un réseau de profil arbitraire par un profil en escalier montre que cette approximation réduit considérablement la convergence des méthodes différentielles (classique, modale et « Rigorous coupled wave ») en raison de l'augmentation locale du champ électrique sur les bords des marches d'escalier. Cette étude montre la supériorité de la méthode différentielle classique qui peut traiter le profil sans cette approximation et présente une meilleure convergence numérique.

III.3.2. Etude des MOEMS (MicroOptoElectroMechanical Systems).

Cette étude, entreprise en collaboration avec la firme ATMEL (Grenoble) s'intéresse à une nouvelle génération de MOEMS: Fabry-Perot constitué par une cavité optique insérée entre deux empilements de couches minces. Ces structures possèdent de remarquables propriétés de filtrage accordable pour les communications optiques. Un contrat est à la signature avec ATMEL. Ce contrat se propose, dans sa première phase, d'évaluer les performances du MOEM représenté sur la figure 14.

Les MOEMS développés actuellement visent la fonction « filtre sélectif accordable en longueur d'onde ». Il s'agit d'une cavité optique insérée entre deux miroirs de Bragg. Par des procédés électro-mécaniques, on peut déformer certaines des lames, ce qui permet de faire varier la taille de la cavité, donc la longueur d'onde de résonance. Le but des travaux en cours est d'une part d'évaluer les pertes de lumière engendrées par la taille finie du dispositif éclairé par un faisceau limité, et d'autre part de calculer la transmission du MOEMS pour une

courbure donnée. La simulation est effectuée en périodisant la structure. Nous pouvons ainsi utiliser nos codes numériques traitant de la diffraction par un réseau bidimensionnel.

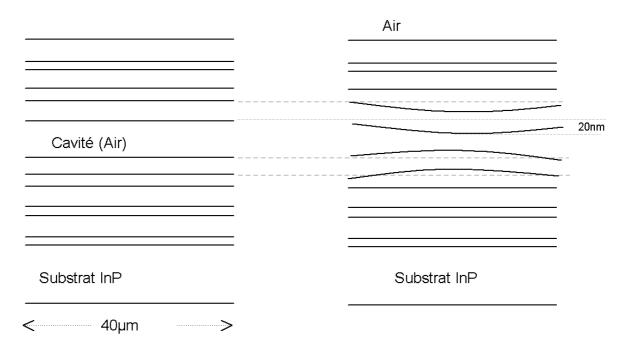


Figure 14: A gauche: la cavité initiale n'est pas déformée. A droite: déformation due aux effets électro-mécaniques.

III.3.3.Phénomènes liés aux anomalies des réseaux

Depuis le début du XXème siècle, le terme "anomalie" est utilisé quand les propriétés diffractives présentent des caractéristiques surprenantes, par exemple des variations très rapides sous l'effet de la variation d'un des paramètres.

Récemment, les expériences d'Ebbesen ont mis en évidence une transmission importante à travers une couche métallique percée périodiquement de trous de diamètre très inférieur à la longueur d'onde. Ce phénomène a déclenché des discussions polémiques, dues au fait que la théorie des guides d'ondes semble prédire que la lumière ne devrait pas être transmise au-delà du cut-off d'un guide circulaire ayant le diamètre des trous. La raison de la transmission renforcée a été trouvée dans l'excitation d'un plasmon sur la surface entre le métal et le substrat. Il faut noter que l'intérêt du phénomène n'est pas seulement anecdotique, car il semble bien que l'utilisation de plasmons de surface offre la possibilité de manipuler la lumière avec des dispositifs dont la taille est très inférieure à la longueur d'onde. Les applications sont évidemment immenses dans le cadre de la miniaturisation des circuits optiques.

Les propriétés des échelles (réseaux comportant de nombreux ordres de diffraction et utilisant de grands angles d'incidence) couverts par une couche diélectrique mince ont été étudiées théoriquement et expérimentalement. L'influence des couches pour l'absorption dans l'UV et pour les effets résonants a été démontrée.

III.3.4.Les réseaux en optique non linéaire

Une nouvelle formulation de la théorie des modes couplés a été développée pour l'optique non linéaire. Elle utilise les modes à fuites et permet d'analyser les phénomènes non-linéaires résonnants en utilisant les méthodes numériques de l'optique linéaire. La validité de la méthode a été démontrée par comparaison avec les méthodes rigoureuses et aussi expérimentalement. Une méthode perturbative permet d'obtenir les expressions analytiques des coefficients de couplage des modes par des objets diffractant particuliers et par des réseaux limités.

La bistabilité et la multistabilité optiques dans les coupleurs à réseaux et à prisme ont été étudiées et leur capacité à générer l'harmonique moitié a été montrée.

III.3.5.Les réseaux et la métrologie

Nous avons mis au point un capteur de déplacement fin (nanométrique) utilisant deux réseaux en transmission de même période. Il s'agit d'une étude théorique et expérimentale, qui a donné lieu à un brevet. Le capteur travaille dans des conditions non résonnantes et permet une grande tolérance des paramètres d'utilisation (stabilité vis à vis des fluctuations de la longueur d'onde, de la collimation du faisceau incident, et du changement de la distance entre les surfaces).

III.3.6. Filtrage de la lumière et DWDM (Dense Wavelength Domain Multiplexing).

En 2000, grâce à une bourse CIFFRE d' A. L. Fehrembach cofinancée par la firme Highwave Technology, nous avons débuté l'étude de l'utilisation de "réseaux-couches minces" pour contribuer à l'élaboration des multi-démultiplexeurs du vingt et unième siècle. Les besoins dans ce domaine sont immenses et urgents, avec en particulier le développement vertigineux des besoins en communications par fibres optiques. Les "réseaux-couches minces" ne sont rien d'autre qu'un empilement de couches minces sur lequel on a posé un réseau de diffraction. Ce concept permet de cumuler les propriétés de deux types de multiplexeurs : ceux à réseaux et ceux à couches minces. Nous avons donc rassemblé au sein de l'Institut Fresnel les compétences sur les deux types de structure dans le cadre de la thèse d' A. L. Fehrembach. Une théorie phénoménologique faisant appel à la continuation analytique dans le plan complexe des matrices de diffraction de la structure a été développée. Parallèlement, une théorie perturbationnelle nous permet de comprendre les bases physiques du filtrage. Grâce à ces théories et à nos résultats numériques, nous avons déjà démontré que les "réseaux-couches minces" possèdent d'excellentes propriétés de filtrage fréquentiel, et nous avons défini précisément les conditions dans lesquelles un filtrage étroit et indépendant de la polarisation peut être obtenu. La règle fondamentale que nous avons pu énoncer est la suivante: un filtrage efficace en onde non polarisée exige l'excitation de deux modes de propagation dans la structure. Les deux modes sont indépendants si l'un d'entre eux peut se

propager sans exciter l'autre. En pratique, nous avons pu constater et expliquer que les deux modes deviennent indépendants quand ils se propagent dans des directions quasi-orthogonales.

Il s'avère toutefois difficile de répondre précisément à toutes les exigences des industriels: par exemple le filtrage doit être très étroit en longueur d'onde et large en incidence, car l'onde incidente est un faisceau, et par conséquent, le filtrage en longueurs d'onde doit se maintenir à tous les angles d'incidence contenus dans le faisceau. Des résultats très prometteurs ont cependant été acquis.

Les figures 15 et 16 montrent un de nos résultats récents. La structure (figure 15) est un réseau bidimensionnel formé par quatre couches diélectriques, la couche supérieure ayant été percée de trous circulaires répartis suivant un motif hexagonal périodique. La figure 16 donne la réflectivité de ce réseau pour les deux polarisations fondamentales.

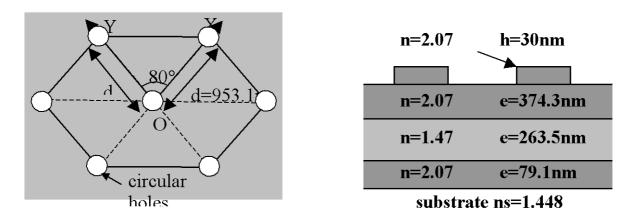


Figure 15: structure du réseau bidimensionnel

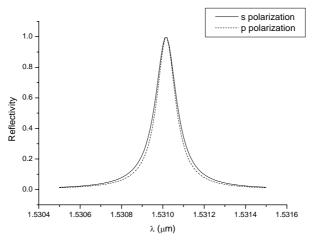


Figure 16: réflectivité du réseau sous une incidence de 14° dans le plan de symétrie vertical du réseau (partie gauche de la figure 15)

III.3.7. Collaborations industrielles

Enfin, nous poursuivons notre collaboration très ancienne avec Jobin-Yvon qui nous consulte très régulièrement pour l'optimisation de leurs réseaux commerciaux, dans le cadre d'un contrat de collaboration.

III.4. Conclusion et prospectives

Nous avons sur chacun des thèmes abordés indiqué les perspectives de travail. On peut considérer que l'ensemble de ces thèmes seront poursuivis dans les années futures. Cependant, nous pouvons distinguer quelques thèmes émergents dont l'importance est appelée à croître dans les prochaines années:

- Étude des méta-matériaux (en particulier matériaux de la main gauche)
- Étude des fibres optiques à cristaux photoniques
- Étude des nouveaux types de MOEMS
- En collaboration avec le LPMC de l'Ecole Polytechnique, étude de l'extraction de la lumière émise par une source placée dans une structure planaire au moyen d'un pavage d'Archimède (Action Concertée du programme Nanosciences Nanotechnologies du CNRS)
- Étude des forces électromagnétiques s'exerçant sur des micro-particules.

III.5. Activités de rayonnement dans la communauté scientifique

- D. Maystre et G. Tayeb ont organisé en 2000 et 2002 deux sessions du Colloque international PIERS (Cambridge-USA).
- D. Maystre a été co-organisateur de la deuxième édition du meeting "Electromagnetic Optics II" à Paris en août 2001, qui faisait suite au premier meeting sur le même sujet, organisé par D.M. en 1998 à Hyères.

Il est membre de l'Editorial Board du Journal of Modern Optics (Londres, Rochester) et membre de l'Electromagnetic Academy (Cambridge, USA).

Il faut noter que D. Maystre, co-directeur de l'équipe CLARTE, est directeur du GDR Ondes créé le 1er janvier 2002 par le département STIC du CNRS. Il participe aussi au comité de pilotage du RTP Instruments et Systèmes d'Ondes.

Enfin, D. Maystre et B. Gralak (post-doc) ont été nominés (Novembre 02) au concours « Festival des Sciences et Technologies » réunissant l'ensemble des acteurs de la science en PACA.

L'équipe s'est vue attribuer le financement d'un PICS (50kF par an) par le CNRS. Ce PICS, couplé à une allocation parallèle du gouvernement australien, nous permet d'entretenir des échanges avec l'université de Sydney, groupe du Professeur McPhedran. Ce PICS, attribué pour 2001 et 2002, est actuellement tourné vers l'étude des fibres à cristaux photoniques et la modélisation des cristaux photoniques tridimensionnels.

III.6. <u>Doctorants</u>

III.6.1.Doctorants présents au 01 septembre 02

Nom, Prénom	Date d'arrivée dans l'unité	Type de bourse (pour les doctorants)	Direction de thèse	DEA d'origine	date de soutenance
MOINE Olivier	2002	CNRS	G . TAYEB / B. STOUT	Optique, Image et Signal, Marseille	2005
BONOD Nicolas	2001	M.E.N.R.T./I.U.F.	M. NEVIERE / E. POPOV	Optique, Image et Signal, Marseille	2004
FEHREMBACH Anne Laure	2000	C.I.F.R.E	S. ENOCH / A. SENTENAC	Optique, Image et Signal, Marseille	2003
KUHLMEY Boris	2000	AC	D. MAYSTRE (Cot.Australie)	Optique et Photonique	2003
GUERIN Nicolas	1999	M.E.N.R.T.	G. TAYEB / S. ENOCH	Physique des Particules, Physique Math et Modélisation	2002

III.6.2. Thèses soutenues (99-02)

Nom, Prénom	Type de bourse	Direction de thèse	DEA d'origine	date de soutenance	Devenir professionnel
GUENNEAU Sébastien	Région/Ent.	G. BOUCHITTE/ F. ZOLLA	Physique des Particules, Physique Math et Modélisation		Post doc Liverpool
GRALAK Boris	AMX	D.MAYSTRE/G.TAYEB / S.ENOCH	Physique des Particules, Physique Math et Modélisation.	1/6/01	Post doc
BAGIEU Marie	Alloc.Recherche	D. MAYSTRE	X	1/9/99	Ent.

III.7. CLARTE: Production scientifique

*72 RICL, 23 CAA, 10 CI, 4 Brevets et 8 Bookch

III.7.1.Publications dans revues internationales avec comité de lecture

- B. Gralak, S. Enoch and G. Tayeb, "From scattering or impedance matrices of gratings to Bloch modes of photonic crystals", Journal of Optical Society of America A, 19, p.1547-1554, 2002.
- K. Watanabe, R. Petit, M. Nevière, "Differential theory of gratings made of anisotropic materials", J. Opt. Soc. Am. A 19,325-334, 2002-05-15.
- S. Enoch, B. Gralak, G. Tayeb, "Enhanced emission with angular confinement from photonic crystals", Applied Physics Letters, 81, p.1588-1590, 2002.
- A. Rahmani, P.C. Chaumet, G. W. Bryant, "Local-field correction for an interstitial impurity in a crystal", Opt. Lett. Vol 27, 430 (2002).
- D. Felbacq, S. Clerjon, J.L. Damez, F. Zolla, "Modeling microwave electromagnetic field absorption in muscle tissues", EPJ Applied Physics proofs Accepted April 2002 must be published.
- S.Guenneau, A.Nicolet, F. Zolla et S.Lasquellec, "Modelling of Photonic crystal optical fibers with finite elements", à paraître dans "IEEE Transactions on Magnetics", vol38, n 2, Mars 2002, pp. 1261-1264.
- P.C. Chaumet, A. Rahamani, M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-objects with an apertureless probe", Phys. Rev. Lett. Vol 88, 123601 (2002).

- A.L. Fehrembach, D. Maystre, A. Sentenac, "Phenomenological theory of filtering by resonant dielectric gratings", J.Opt. Soc. Am. A, 19, 1136-1144, (2002).
- E.Popov, M.Nevière, B.Gralak, G.Tayeb, "Staircase approximation validity for arbitrary shaped gratings", J. Opt. Soc. Am. A 19,33-42,2002.
- R. Reinisch, M. Nevière, G. Tayeb, E. Popov, "Symmetry relations for reflection and transmission coefficients of magneto-optic systems", Optics Communications, Vol. 205, p.59-70, 2002.
- B. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L.C. Botten, C. Martijn de Sterke, and R. C. McPhedran, "Multipole method for microstructured optical fibers II: implementation and results.", J. Opt. Soc. Am. B}, in press, 2002.
- T.P. White, B. Kuhlmey, R.C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L.C. Botten, "Multipole method for microstructured optical fibers I: formulation", J. Opt. Soc. Am. B, in press, 2002.
- S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin and P. Vincent, "A metamaterial for directive emission", Phys. Rev. Lett. submitted...
- B. Bozkhov, M. Neviere, E. Popov, "Differential method as applied to multilayered structures with arbitrary refractive index profiles.", Bulgarian J. Physics, à paraître.
- D. Felbacq, F. Zolla, "Do Fresnel coefficients exist?", Foundations of Physics, soumis.
- 57 S.Enoch, E.Popov, M.Nevière, R.Reinisch, "Enhanced light transmission by hole arrays", Pure and Applied Optics, à paraître.
- D. Maystre and S. Enoch, "Negative refraction and perfect lenses: an analytic demonstration", Phys. Rev. Lett. submitted.
- S.Guenneau, A.Nicolet, F.Zolla et S.Lasquellec, "Numerical and theoretical study of photonic crystal fibers", Progress in Electromagnetic Research" (27 pages), à paraître Lasquellec
- S. A. Darmanyan, A.M. Kamchatnov, M.Nevière, "T.E.-polarized guided modes in layered structures with ki2 nonlinearity", Nonlinear Optics, à paraître.

- D. Felbacq, B. Guizal, F. Zolla, "Ultrarefraction phenomena in Bragg mirrors", Journal of Optics, à paraître.
- S. Guenneau, F. Zolla, "Homogenization of 3D finite photonic crystals with heterogeneous permittivity and prmeability. Part I Asymptotic analysis", Soumis à Asymptotic analysis journal..
- F. Zolla, S. Guenneau, "A duality relation for the Maxwell system", Soumis à Phys. Rev..
- S. Enoch, E. Popov, M. Neviere, "Phenomenological study of enchanced transmission by sub-wavelength hole arrays", J. Opt. A-Pure Appl. Op. special issue "Electromagnetic Optics" in press.
- B. Stout, J.C. Auger, J. Lafait., "A transfer matrix approch to local field calculations in multiple scattering problems.", Journal of Modern Optics Vol 49 No 13..
- D. Prot, B. Stout, K.Lafait, N.Pinçon,B Palpant and S Debrus, "Local electric field enhancements and large third-order optical nonlinearity in nanocomposite materials", J. Opt. A: Pure Appl. Opt. 4 (2002) S99-S102.
- B Stout, C Andraud, D Prot, J Lafait, J C Auger and S Stout, "Complete field descriptions in three-dimensional multiple scattering problems: a transfer-matrix approach", J. Opt. A: Pure Appl. Opt. 4 (2002).
- J C Auger, B Stout, "A recursive centered T-Matrix algorithm to solve the multiple scattering equation: numerical validation", A paraître: Journal of Quantitative Spectroscopy & Radiative Transfer.
- J C Auger, R G Barrera, B Stout, "Scattering efficiencies of aggregates of spherical particles", A paraître : Journal of Quantitative Spectroscopy & Radiative Transfer.
- B Stout, C Andraud, S Stout, J Lafait,, "Absorption in multiple scattering systems of coated spheres", Soumis: Journal of the Opt. Soc. Am A.
- E. Popov, B. Bozhkov, M. Neviere, "Almost perfect blazing by photonic crystal rod grating.", Appl. Opt.40, 2417-2422, 2001.
- N. Guérin, S. Enoch, G. Tayeb, "Combined method for the computation of the doubly periodic Green's function", J. of Electromagn. Waves and Appl., Vol. 15, n 2, 205-221, 2001.

- E.Popov, B. Bozhkov, "Corrugated waveguides as resonance optical filters -advantages and limitations.", J.Opt. Soc. Am. A/Vol.18, n 17/July 2001.
- S. Enoch, G. Tayeb, D. Maystre, "Dispersion diagrams of Bloch modes applied to the design of directive sources", Progress in Electromagnetic Research, Special issue on "Electromagnetic Applications of PBG materials and Structures", Editors: T. Itoh et A. Priou, in press..
- A. Rahmani, P.C. Chaumet, F. de Fornel, "Environment-induced modification of spontaneous emission: Single-molecule near-field.", Phys. Rev. A 63 (2001) 023819.
- B.Chernov, M.Nevière, E.Popov, "Fast Fourier factorization method applied to modal analysis of slanted lameller diffraction gratings in conical mountings", Opt. Commun. 194,289-297, 2001.
- A.L. Fehrembach, D. Maystre, A. Sentenac, "Filtering of unpolarized light by gratings", J. Opt. A: Pure Appl. Opt., special issue article, (2002) à paraître.
- A.L. Fehrembach, S. Enoch, A. Sentenac, "Highly directive light-source using two-dimensional photonic crystal slabs", Applied Physics Letters, volume 79, number 26, 4280-4282.
- E. Popov, M. Neviere, "Maxwell equations in Fourier space: fast converging formulation for diffraction by arbitrary shaped, periodic, anisotropic media.", J. Opt. Soc. Am.18, 2886-2894, 2001.
- B. Gralak, G. Tayeb and S. Enoch., "Morpho butterflies wings color modeled with lamellar grating theory.", Optics Express 9, p.567-578, 2001.
- P.C. Chaumet, M. Nieto-Vesperinas, "Optical binding of particles with or without the presence of a flat dielectric surface.", Phys. Rev. B, vol 64, 035422 (2001).
- D. Maystre, "Photonic crystal diffraction gratings", Optics Express, Vol.8, n 3, 209-216, 2001.

- G.Zartov, T.Tenev, K.Panajotov, E.Popov, R. Peyeva, "Photorefractive beam-fanning effect and self-pulsations in coated LiNbO3 slabs", J.OPT.Soc.Am.A, vol.18, n 7 July 2001.
- S. Darmanyan, M. Neviere, "Surface waves at the interface of quadratic nonlinear media.", Physics Letters A 281, 260-264, 2001.
- S.A. Darmanian and M. Neviere, "Dichromatic nonlinear eigenmodes in slab waveguide with nonlinearity.", Physical Review E, Vol. 63, à paraître.
- S. Enoch, R. C. McPhedran, N. A. Nicorovici, L. C. Botten and J. N. Nixon, "Sums of spherical waves for latticesSums of spherical waves for lattices, layers and lines", J. Math. Phys 42, 5859-5870 (2001).
- B. Stout, J.C. Auger, J. Lafait, "Individual and aggregate scattering matrices and cross sections: conservation laws and reciprocity", Journal of Modern Optics, Vol. 48, No. 14, 2105-2128.
- B. Stout, S. Stout, M. Neviere, "Photonic crystal waveguides : a one-dimensional model theory.", J. of Electromagn. Waves and Appl., Vol. 15, n 7, 961-988, 2001.
- J.C. Auger, B. Stout, R.G.Barrera, F. Curiel, "Scattering properties of rutile pigments located eccentrically within microvoids.", Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 15, n 7, pp. 961-988, 2001.
- B. Gralak, S. Enoch, S. Tayeb, "Anomalous refractive properties of photonic crystals", J. Opt. Soc. Am. A, 17, 6, p. 1012-1020, 2000.
- M. Bagieu and D. Maystre, "Axis expansion method for nearly two-dimensional objects", Progress in Electromagnetic Research, 26, 2000, 113-134.
- E. Popov, M. Neviere, "Differential theory for diffraction gratings : a new formulation for TM polarization with rapid convergence", Optics Letters, 2000, 25, 9, 598-600.
- S.A. Darmanyan, M. Neviere, "Eigenmodes of waveguides with quadratic non linearity", Optics Communications, 2000, 176, 231-237.

- B. Gralak et D. Maystre, "Electromagnetic phenomenological study of photonic band structures", Journal of Modern Optics, 47, 7, 1253-1272, 2000.
- E. Popov, M. Neviere, "Grating theory: new equations in Fourier space leading to fast converging results for TM polarization", J. Opt. Soc. Am A, 2000, 17, 10, 1773-1784.
- S. Guenneau, F. Zolla, "Homogenization of three-dimensional finite photonic crystals", Electromagnetics Research 27, 2000, p. 91-127.
- S. Bonnard, P. Vincent, M. Saillard, "Inverse obstacle scattering for homogeneous dielectric cylinders using a boundary finite-element method", J. Opt. Soc. Am A, 2000, 17, 10, 1773-1784.
- S. Bonnard, P. Vincent, M. Saillard, "Inverse obstacle scattering for homogeneous dielectric cylinders using a boundary finite-element method", IEEE Trans. Antennas and Propag. 48, 3, 2000, p.393-400.
- S.A. Darmanyan, E. Popov, M. Neviere, "Nonlinear prism coupler: approximate theory and comparison with rigourous analysis", J. of Electromagnetic Waves and Applications, 2000, 14, 383-399.
- M. Saillard, P. Vincent and G. Micolau, "Reconstruction of buried objects surrounded by small inhomogeneities", Inverse Problems, 16, n 5, 2000, p.1195-1208.
- A. Sentenac, Ph. Lalanne, D. Maystre, "Symmetry properties of the field transmitted by inductive grids", Journal of Modern Optics, 2000, 47, 13, 2323-2333.
- E. Popov, M. Neviere, S. Enoch, R. Reinisch., "Theory of light transmission through subwavelength periodic hole arrays", Physical review B, 62, 23, p. 16100-16108, 2000.
- M. Bagieu, D. Maystre, "Regularized Waterman and Rayleigh methods: extension to two-dimensional gratings", J. Opt. Soc. Am. A, 1999, 16, 2, 284-292.
- E. Popov, B. Bozhkov, D. Maystre, J. Hoose, "Integral method for echelles covered with lossless or absorbing thin dielectric layers", Applied Optics, 1999, 38,1, 47-55.

- 9 M. Neviere, E. Popov, B. Bojkhov, L. Tsonev, S. Tonchev, "High-accuracy translation-rotation encoder with two gratings in Littrow mount", Appl. Opt., 1999, 38, 1, 67-76.
- M. Bagieu and D. Maystre, "Diffraction by nearly two-dimensional objects", Journal of Optics A: Pure and Applied Optics, 1 (1999) 537-544.
- S. Bonnard, M. Saillard, P. Vincent, "Improved inverse scattering for dielectric homogeneous cylinders", Journal of Optics A: Pure and Applied Optics, 1999, 1, 566-572.
- P. Sabouroux, G. Tayeb, D. Maystre, "Experimental and theoretical study of resonant microcavities in two-dimensional photonic crystals", Optics Commun. 160 (1999) 33-36.
- S. Enoch, G. Tayeb, D. Maystre, "Numerical evidence of ultrarefractive optics in photonic crystals", Opt. Commun. 161, 171-176, 1999.
- S. Enoch, H. Akhouayri, C. Deumier, C. Amra, "Second-harmonic scattered light from a zinc sulfide thin film.", Opt. Commun. 161, 177-181, 1999.
- A. M. Kamchatnov, M. Neviere, A.D. Boardman, V.M. Agranovich, "Derivative quadratic nonlinearity and cascaded solitons in quasi-phase-matched waveguide systems", Nonlinear Guided Waves and Applications, OSA Technical Digest (Optical Society of America, Washington D.C.), 1999, p.337-338.
- M. Léonetti, G. Renversez and E. Dubois-Violette, "Influence of specific ionic diffusion on the protein self-aggregation instability", Europhysics Letters, 46(1), p. 107-113, 1999.
- S. Enoch, H. Akhouayri, C. Deumié, C. Amra, "Second-harmonic scattered light from a zinc sulfide thin film.", Opt. Commun. 161, 177-181, 1999.

III.7.2.Conférences avec actes

- B. Gralak, G. Tayeb, S. Enoch, E. Popov, "Color rendering techniques applied to the study of butterflies wings", OSA Topical Meeting, Diffractive Optics & Micro-Optics, June 2002, Tucson, USA.
- G. Tayeb, S. Enoch, P. Sabouroux, N. Guérin, P. Vincent, "Compact directive antennas using metamaterials.", JINA 2002, nov.2002.
- N. Guérin, P. Sabouroux, S. Enoch, G. Tayeb, P. Vincent, "Étude et réalisation d'antennes directives", Actes des 7èmes Journées de Caractérisation Micro-ondes et Matériaux, Toulouse, mars 2002, p.163-166.
- B. Gralak, S. Enoch, G. Tayeb, "Radiating dipoles in woodpile and simple cubic structures. Photonic Bandgap Materials and Devices", Editors A. Adibi, A. Scherer, S.Y. Lin, Proceedings of SPIE, vol. 4655, p.241-250, Jan. 2002.
- D.N. Chigrin, S. Enoch, C.M. Sotomayor Torres and G. Tayeb, "Self-guiding in two-dimensional photonics crystals. Photonic Bandgap Materials and Devices", Editors A. Adibi, A. Scherer, S.Y. Lin, Proceedings of SPIE, vol. 4655, p.63-72, Jan. 2002.
- B. Kuhlmey, G. Renversez, and D. Maystre, "Rigorous electromagnetic theory of microstructured optical fibres", In JEE'02, European Symposium on Numerical Methods in Electrognetics}, pages 193--198, 2002.
- B. Kuhlmey, G. Renversez, D. Maystre, T. White, R. McPhedran, L. Botten, and M. de Sterke, "Multipole study of dispersion and losses of photonic crystal fibres", In SPIE Proceedings, 2002.
- S. Guenneau, S. Lasquellec, A. Nicolet, F. Zolla, "Design of photonic band gap optical fibers using finite elements", présenté au TEAM Workshop and Application Forum, Evian, July 6, proceedings, pp.38-39, à paraître dans COMPEL.
- 15 A. Nicolet, "Analogy between the finite element method and the circuit equations", EPNC, 2002.

- A. Nicolet, S. Guenneau, Ch. Geuzaine, F. Zolla, "Modeling of electromagnetic waves in periodic media with finite element", présenté à la conférence ACOMEN 2002, Liége, Belgique, mai 2002.
- S. Enoch, E. Popov, and M. Nevière, "3-D photonic crystals dispersion relation: improved convergence using fast Fourier factorization (FFF) method", Physics, Theory and Applications of Periodic. Structures in Optics", P. Lalanne ed., vol. 4438, p.183-190, (SPIE, Bellingham, USA), 2001.
- S. Guenneau, A. Nicolet, F. Zolla, C. Geuzaine, B. Meys, "A Finite Element Formulation for Spectral Problems in Optical Fibers", COMPEL, The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 20, No. 1, pp. 120-131, 2001.
- E. Popov and M. Nevière, "Arbitrary shaped, periodic, anisotropic media: new presentation of Maxwell equations in the truncated Fourier space", Physics, Theory and Applications of Periodic Structures in Optics", P. Lalanne ed., 4438, 19-30, (SPIE, Bellingham, USA, 2001).
- E. Popov and J. Hoose, "Light demultimplexong by using diffraction gratings: importance of electromagnetic effects", Proc. SPIE 46th Annual Meeting, San Diego 2001.
- E. Popov, M. Nevière, and B. Bozhkov, "Light demultiplexing by photonic crystal grating", in "Physics, Theory and Applications of Periodic Structures in Optics", P. Lalanne ed.,4438,77-83 (SPIE, Bellingham, USA, 2001).
- G. Tayeb., S. Enoch., N. Guérin, P. Vincent, "Study of Photonic Crystal Based Directive Antennas", 24th ESTEC Antenna Workshop on Innovative Periodic Antennas: Photonic Bandgap, Fractal and Frequency Selective Structures, Noordwijk (Netherlands), ESA-WPP-185, p.11-16, 2001.
- E. Popov, M. Nevière, S. Enoch, and R. Reinisch, "Sub-wavelength hole array enhanced light transmission", in "Physics, Theory and Applications of Periodic Structures in Optics", P. Lalanne ed.,4438,69-75 (SPIE, Bellingham, USA, 2001).
- E. Popov, M. Nevière, B. Gralak, and G. Tayeb, "The classical differential method, the rigorous coupled wave theory, and the modal method: comparative analysis of convergence properties in staircase approximation", in "Physics, Theory and Applications of Periodic Structures in Optics", P. Lalanne ed., vol. 4438, p. 12-18 (SPIE, Bellingham, USA), 2001.

- B. Kuhlmey, D. Maystre, and G. Renversez, "Photonic crystals: modal theory of pc optical fibers and numerical application", 3rd International ISAAC Congress, 2001. Freie Universitaet Berlin, August 2001.
- Nicolas Guérin, Stefan Enoch, Gérard Tayeb, Patrick Vincent, "Green's function for biperiodic gratings. Application to the study of directive antennas using metallic photonic crystals properties", Proceedings of OHD 2001, 201-204 (2001).
- B. Kuhlmey, G. Renversez, and D. Maystre, "Modeling of photonic crystal fibers", In J.J. Greffet, editor, Electromagnetic Optics 2, page~66. Laboratoire {EM2C} and Ecole Centrale de Paris, august 2001.
- 2 R. Grange, B. Milliard, J. Flamand, A. Pauget, G. Waultier, G. Moreaux, C. Rossin, M. Neviere, "Galex UV grism for slitless spectroscopy survey", Proceedings International Conference on space Optics ICSO, 5-7 déc. 2000, Toulouse.
- S. Guenneau, A. Nicolet, F. Zolla, "Numerical and Theoretical Analysis of Photonic Crystal Fibers", PIERS 2000, Boston, juillet 2000 et contribution pour le livre PIER 2000 à paraître (ed. A. Priou).

III.7.3. Conférences invitées dans des congrès internationaux

- E. Popov, M. Neviere, N. Bonod, "Differential theory amelioration using Fourier factorisation rules", OSA Tech. Digest DOMO v.75, 34-37, 2002.
- G. Tayeb, "Photonic Crystal-based antennas", Invited conference, European Space Agency, ESTEC, Noordwijk, The Netherlands, April 12th, 2002.
- 8 S. Enoch and G. Tayeb, "The richness of the dispersion relation of photonic crystals: application to superprism effect and other remarkable effects", Invited conference, Second IEEE Conference on Nanotechnology (IEEE-Nano'2002), August 26-28, 2002.
- A. Nicolet, S. Guenneau, Z. Zolla, C. Geuzaine, B. Kulhmey, and G. Renversez, "Numerical investigation of photonic crystal fibres by means of finite element and matrix of diffraction methods.", Liverpool, 2002. Kluwer Academic Press.

- F. Zolla, S. Guenneau, A. Nicolet, "Artificial fero-magnetic anisotropy: homogenization of 3D finite photonic crystals", I.U.T.A.M., 8-11 Juillet 2002 Liverpool.
- B. Kuhlmey, G. Renversez, and D. Maystre, "Losses and dispersion of microstructured optical fibres", In Progress in Electromagnetics Research Symposium 2001, Osaka, 2001. The Electromagnetics Academy.
- B. Gralak, S. Enoch, G. Tayeb, "Photonic crystals: from Bloch modes to T-matrices", Progress in Electromagnetics Research Symposium, Cambridge, USA, July 2000.
- D. Maystre, G. Tayeb, S. Enoch, "Propagation of light in photonic band structures: numerical results and applications", International Photonics Conference (IPC'2000), Taiwan, 12-15 Decembre 2000, Conférence invitée.
- D. Maystre, G. Tayeb, P. Vincent, S. Enoch, G. Guida, "Electromagnetic modeling of dielectric and metallic photonic crystals", Invited conference, IUTAM Symposium on Mechanical and Electromagnetic Waves 99, Sydney, January 1999.

III.7.4.Brevets

4	Brev	2002	J. Hoose, R. Frankel, E. Popov.	"Lamellar grating structure with polarization independent diffraction efficiency", #CHRO-P01-007, filed January 31, 2002. (proposé)
3	Brev	2001	J. Hoose, R. Frankel, E. Popov.	"Diffractive structure for high-dispersion WDM application," applications for US patent No 60/286,801./25 April 2001 and 60/300,639 /25 June 2001. (proposé)
2	Brev	2001	J. Hoose, R. Frankel, E. Popov.	"Compact diffraction grating for laser tuning and WDM applications", #CHRO-p60-004, filed 25 April, 2001.(proposé)
1	Brev	2001	J. Hoose, R. Frankel, E. Popov.	"Lamellar grating structure with polarization-independent diffraction efficiency," US patent application No.60/351,067, January 23, 2002 (proposé)

III.7.5. Chapitres dans ouvrages

8	Book Ch	2002	D. Felbacq, E. Centeno, F. Zolla	Electromagnetic Optics of Finite-Size Photonic Crystals: Homogeneization, Resonance non linearity and propagation	A paraître
7	Book Ch	2002	D. Maystre, G. Tayeb, P. Vincent, S. Enoch, G. Guida	Electromagnetic modelling of dielectric and metallic photonic crystals	IUTAM Symposium 99/4: Mechanical and Electromagnetic Waves in Structured Media. Editors: R.C. McPhedran, L.C. Botten, N.A. Nicorovici, Kluwer Academic Publishers Dordrecht/Boston/London, January 2002
6	Book Ch	2002	D. Maystre, M. Saillard, G. Tayeb	Special methods of wave diffraction	Chapter 1.5.6 in "Scattering", editors : P. Sabatier and E.R. Pike, Academic Press, London, 2001 (ISBN : 0126137609)
5	Book Ch	2001	M. Neviere, S.A. Darmanyan	Nonlinear eigenmodes in quadratic film waveguides	In "Nonlinearity and Disorder: Theory and Applications", ed. by Abdullaev F.K.H., Soepençen M., Bang O., NATO ASI Series, Kluwer Academic Publishers (London, 2001).p. 423-433
4	Book Ch	2001	D. Maystre	Diffraction (Les origines)	Electronique, Génie électrique, Microsystèmes, Tome 1 : Principes de base en Optique, Hermès, à paraître (43 pages)
3	BookCh	2001	J.M. Lourtioz, D. Maystre, J.M. Gerard, H. Benistry, A. Chelnokov,	Les matériaux structurés périodiquement, les cristaux photoniques	Tome 7 : Matériaux pour l'opto- électronique, Hermès, à paraître (48

			V. Berger		pages)
2	Book	2000	M. Neviere, E. Popov, R. Reinisch, G. Vitrant	Electromagnetic resonances in Nonlinear Optics	Série "Advances in Nonlinear Optics", editor: A.F. GARITO, F. KAJZAR, and A. BOARDMAN, Gordon and Breach Science Publishers, 2000. 389 pages
1	Book Ch	2000	R. Reinisch, G. Vitrant, E. Popov, M. Neviere	Leaky modes in nonlinear optical resonators	IIn "Multiphoton and light driven multielectron processes inorganics: new phenomena, materials, applications" Eds. F. Kajzar and M. V. Agranovich, NATO Science Series, Vol. 79, p. 167-182, (Kluwer Academic Publishers, Dordrecht), 2000

III.8. CLARTE: Bilan financier

III.8.1.Contrats de recherche référencés R3

ANNEE	Contrat	Compte N°	Equipe	Resp.	Montant HT en EUROS	TOTAL par année	Solde au 17.10.02
2000	ALCATEL	4149 R3	CLARTE	Tayeb/Vincent/Enoch	30 489.80	30 489.80	9 898.00
	Tot	tal CLAR	TE		30 489.80		9 898.00
	MOYENNE SUR 4 ans						

III.8.2.Contrats de recherche référencés C

ANNEE	Contrat	Fact n°	Equipe	Chercheur	Date	Montant HT en EUROS	TOTAL par année	Solde au 17.10.02
1999	Jobin Yvon	127 C	CLARTE	Maystre/Nevière	01/10/1999	2 674.57	2 674.57	0.00
2000	Jobin Yvon	532 C	CLARTE	Maystre/Nevière	01/02/2000	3 658.78		147.
	Jobin Yvon	532 C	CLARTE	Maystre/Nevière	01/10/2000	2 728.08	6 386.85	1184.
	JOBIN YVON	532 C	CLARTE	Maystre/Nevière	01/02/2001	3 731.95		1 957.00
	SAINT-GOBIN	532 C	CLARTE	Nicolet/Zolla	15/06/2001	15 244.90		5 106.00
2001	AICATEL Space Indus.	532 C	CLARTE	Tayeb/Vincent/Enoch	09/10/2001	12 197.00		10 596.00
	AICATEL Space Indus.	532 C	CLARTE	Tayeb/Vincent/Enoch	09/10/2001	19 820.00		19 820.00
	CROMAPLEX	532 C	CLARTE	Popov	23/05/2001	6 112.00	57 105.85	0.00
	JOBIN YVON	532 C	CLARTE	Maystre/Nevière	01/11/2001	9 399.84		4 738.00

2002	CROMAPLEX	532 C	CLARTE	Popov	23/05/2002	6 112.00	15 511.84	4 947.00
	TOTAL 1999 - 2002							47 164.00
		Moyenne s	sur 4 ans			20 419.78		

III.8.3. Opérations spécifiques CNRS

ANNEE	Origine	CDP	Equipe	Chercheur	Montant HT en EUROS	TOTAL par année
2001	CNRS PICS	010 153	CLARTE	Maystre	7 622.45	7 622.45
2002	CNRS Moyens Spécifiques	0MS 153	CLARTE	Maystre	7 600.00	7 600.00
		15 222.45				
	Мс	yenne sur	4 ans		3 805.61	

EQUIPE MAP2 : EFFECTIFS

Nom, prénom	Date	Corps,	Section CNU	HDR	Date d'arrivée	Etablissement	%
	naissance	grade	Ou CNRS		Dans l'unité		Affectation
AKHOUAYRI	mars-56	PR2	63	X	oct. 92	E.N.S.P.M.	1.00
Hassan	4.1	DD 2	20		. 0.7	THE (TIES)	
BORGOGNO Jean Pierre	nov-41	PR2	30	X	jan. 85	UIII (I.U.T.)	1.00
COMMANDRE Mireille	sept-56	PR2	63	X	jan. 85	E.N.S.P.M.	1.00
DEUMIE- RAVIOL Carole	nov-70	MC	63		sept. 98	E.N.S.P.M.	1.00
HUARD Serge	mai-48	PR1	63	X	oct. 86	E.N.S.P.M.	1.00
NATOLI Jean Yves	janv-65	MC	63		sept. 95	E.N.S.P.M.	1.00
VEVE- FOSSATI Caroline	avr-69	MC	63		sept-99	E.N.S.P.M.	1.00
SPINELLI Jean-Pierre	19/2/60	T	BAP VII		2002	E.N.S.P.M/ Contractuel	0.33
AMRA Claude	1/10/59	DR2	section 8	X	janv. 86	C.N.R.S.	0.15

Soit, en effectifs temps plein hors administration: 7,48

dont 0,15 chercheur CNRS,

et 5 HDR

IV - EQUIPE MAP2: BILAN SCIENTIFIQUE

IV.1. Introduction

Dans la période 1999-2002, les recherches de l'équipe MAP2 ont porté sur trois grandes thématiques. La photonique de puissance et la diffusion lumineuse ont continué de se développer, alors qu'a démarré en 2001 une nouvelle thématique concernant les capteurs d'image en technologie CMOS.

IV.2. La photonique de puissance

IV.2.1. Activité endommagement laser

L'utilisation de lasers de puissance de plus en plus performants conduit à considérer la tenue au flux des composants optiques comme une spécification incontournable. Les applications vont de l'optique intégrée/fibrée, où la dimension des composants conduit à une forte densité de puissance, jusqu'aux grands lasers comme ceux utilisés pour les projets Mégajoule (France), NIF (USA) ou encore SILVA, ou le domaine de la photolithographie UV profond (vieillissement des composants). L'amélioration de la tenue au flux passe par la compréhension des mécanismes pluridisciplinaires mis en jeu lors du processus complexe de l'endommagement. Nos études ont été soutenues par la DGA (bourses de thèse et contrat) et ont fait l'objet de plusieurs contrats de recherche avec les établissements du CEA (CEA Pierrelate, CESTA Bordeaux, Bruyères Le Châtel, Le Ripault), ainsi que de contrats industriels (Cristal Laser).

IV.2.1.1. Mise en œuvre d'une métrologie fine de l'endommagement

Dans ce contexte, un effort important a porté sur la *métrologie de l'endommagement* et nous avons développé un banc de mesure de tenue au flux laser dans le régime nano-seconde à 1064nm (ω), 532nm (2ω) et 355nm (3ω), entièrement automatisé (figure 1), permettant aujourd'hui de se placer au tout premier rang en ce qui concerne la précision des caractérisations. Ce dispositif est en cours de devenir une référence sur la scène européenne.

Les spécificités du dispositif expérimental sont de tester la tenue au flux en utilisant des faisceaux laser focalisés de petite taille (8µm-50µm) et de posséder un système de visualisation in situ (microscope Nomarski et caméra CCD). L'utilisation de petits faisceaux permet de discriminer les claquages de types « intrinsèque » ou « extrinsèque ». Le claquage dit « intrinsèque » correspond au cas où aucun défaut n'est initialement visible au microscope optique (fond noir, Nomarski). L'utilisation de faisceaux laser de taille millimétrique, plus

fréquente dans la communauté car plus proche des applications industrielles, pénalise cependant la compréhension des mécanismes initiateurs de l'endommagement. En effet les densités de défauts sont telles qu'il est quasiment impossible expérimentalement d'irradier une zone sans aucun défaut détectable optiquement. Nous verrons plus loin qu'une étude détaillée du cas « intrinsèque » avec de petits faisceaux a permis de valider l'hypothèse de l'existence de sites précurseurs de taille nano-métrique.

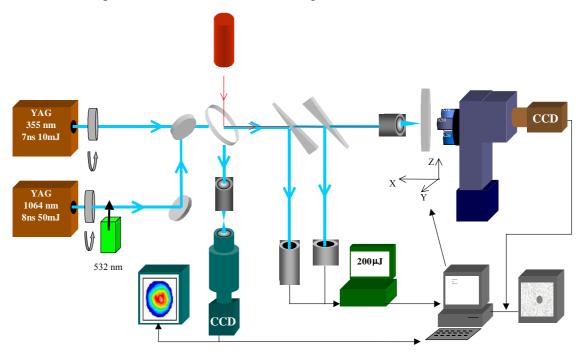


Figure 1 : Schéma du dispositif de mesure de tenue au flux.

La mise en place de procédures de test entièrement automatisées basées sur l'imagerie de la zone irradiée, et surtout d'un contrôle rigoureux en temps réel des paramètres de tir (profil temporel, énergie totale et densité maximale, profil spatial, fluence maximale, diamètre de la zone irradiée, fluence « effective »...) ont permis d'augmenter la précision et la fiabilité des mesures de seuil d'endommagement. Ces résultats ont fait l'objet d'une récente publication dans Applied Optics.

IV.2.1.2. Etude de l'initiation, la croissance des dommages et leur éventuelle réparation

Un point fort du dispositif réside dans la technique de détection de l'endommagement, basée sur l'imagerie de la zone irradiée et un traitement d'image temps réel : elle permet de détecter avec une grande précision les tous premiers stades de l'endommagement. Ce dispositif couplé à une caractérisation de la morphologie des zones irradiées, permet ainsi l'étude de *l'initiation des dommages*, étude très importante pour la compréhension de l'origine du claquage. La visualisation in situ pendant le tir permet également de s'intéresser à

l'étude de la *croissance des dommages*, qui présente un intérêt évident pour les utilisateurs d'optiques subissant des irradiations répétées. L'arrêt de la croissance par d'éventuelles « *réparations* » *laser* peut constituer aujourd'hui une solution au problème de la croissance. Ces études sont en cours et peuvent déboucher sur de nombreux brevets.

IV.2.1.3. <u>Mise en évidence de nano-centres précurseurs de l'endommagement</u> laser

Un résultat majeur est la mise en évidence de *l'existence de nano-défauts précurseurs* de l'endommagement laser. Ceci a été réalisé de manière destructive par la mesure de courbes de probabilité d'endommagement avec des faisceaux de petite taille (~10µm). Un modèle phénoménologique/stochastique a permis de détecter la présence d'une ou plusieurs sortes de défauts auxquels est affecté un seuil spécifique de claquage. La pente obtenue par l'ajustement du modèle théorique aux courbes expérimentales, nous permet de déduire la densité de chaque type de défaut.

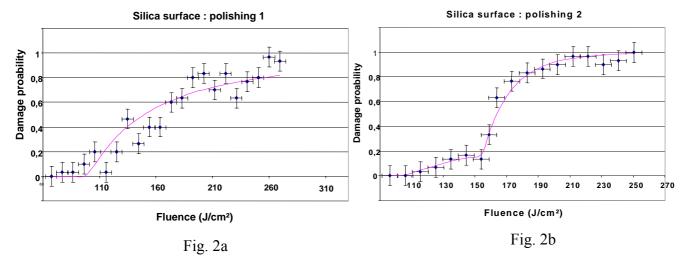


Fig. 2 : Courbes de seuil (900 points de mesure) en surface pour deux échantillons de silice avec différents polissages. L'écart par rapport à une courbe en escalier indique la présence de micro-sites (ou nanocentres) initiateurs de l'endomagement.

La méthode a été appliquée à différents matériaux en volume et en surface, et validée sur des mélanges de liquides présentant des densités de défauts connues. L'influence du procédé de polissage sur le nombre et la densité de défauts a ainsi pu être étudiée (Fig.2). De plus l'observation de la morphologie par microscopie à force atomique d'endommagements sur des films minces de silice irradiés a révélé clairement des micro-zones aléatoires initiant la rupture (Fig.3), confirmant l'existence de centres précurseurs.

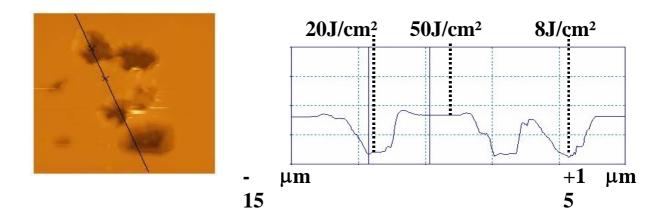


Figure 3 : Images AFM $(30\mu mx30\mu m)$ et sections associées d'une zone endommagée (diamètre du faisceau à $1/e^2$, $45\mu m$)

IV.2.1.4. Développement d'outils non destructifs en vue de révéler les centres précurseurs pour rétro-action sur la technologie de fabrication

L'équipe s'est fortement impliquée dans le développement d'outils non destructifs permettant de révéler ces nano-sites, notamment en développant un microscope photothermique couplé à un dispositif d'endommagement laser, qui permet de détecter des nano-défauts absorbants et d'étudier leur comportement sous irradiation. La résolution limite du microscope est de 100nm. La longueur d'onde est la même, 1,06µm pour les mesures d'absorption (YAG CW) et pour les endommagements (YAG pulsé 7ns). Ce microscope est quasiment unique au monde et permet d'imager les fluctuations de l'indice imaginaire des matériaux, autour d'une valeur moyenne qui peut être inférieure à 10-6. Actuellement le couplage de ce dispositif avec le banc d'endommagement nous a permis de majorer la taille des sites précurseurs, via un modèle de thermique photo-induite. Cette information est pratiquement la seule donnée obtenue de façon non destructrice par la communauté, sur les dimensions des centres initiateurs.

Une étude théorique et expérimentale est actuellement menée sur des nano-inclusions d'or dans la silice (collaboration CEA Bruyère le Châtel, CESTA et Institut Fresnel). Les premiers résultats mettent en évidence le rôle de précurseur joué par les nano-billes d'or. Les endommagements détectables en surface ont toujours pour origine l'inclusion d'or. Nous avons également mis en évidence des étapes de pré-endommagement (fig. 4), observables en microscopie photothermique ainsi qu'au Nomarski. On observe une diminution de l'absorption de la bille sans avoir aucun endommagement détectable. La modélisation thermo-mécanique réalisée au CEA prenant en compte des processus de fusion et de diffusion des particules, permet de retrouver les ordres de grandeur des densités d'énergie mises en jeu dans les observations.

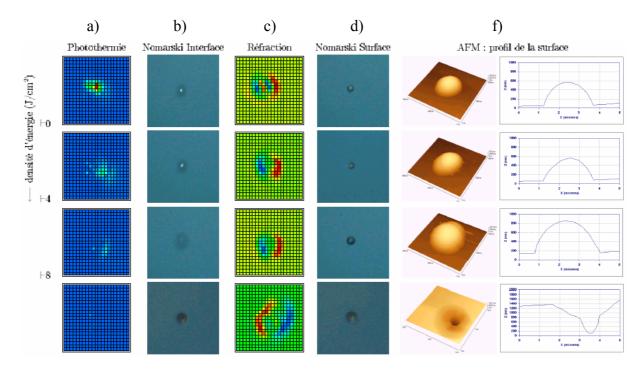


Figure 4 : Images au microscope photothermique a) et c), au Nomarski b) et d), et à l'AFM f) de billes d'or de diamètre 600nm enterrées dans la silice, avant et après des tirs successifs de densité d'énergie croissante.

IV.2.1.5. Effet de tirs cumulés sur le seuil d'endommagement laser : conditionnement et fragilisation des composants.

L'étude du comportement du matériau soumis à des tirs répétés à des énergies inférieures au seuil d'endommagement est très stratégique. Nous l'avons débutée (DEA et thèse DGA qui commence en octobre 2002) en collaboration avec le CESTA. En fonction des matériaux on peut en effet assister à une amélioration de la tenue au flux après une pré-irradiation (*conditionnement*) ou au contraire à une fragilisation du matériau. Dans les deux cas l'observation détaillée de l'évolution de ces matériaux et de leur tenue au flux nous informe sur les mécanismes précurseurs de l'endommagement. Les premières études réalisées sur des verres optiques ont permis de déduire une loi de fragilisation propre à chaque matériau testé, permettant ainsi de livrer une estimation de la durée de vie du composant en fonction de l'énergie d'irradiation et du nombre de tirs. Une procédure automatisée d'irradiation de type rasterscan (avec recouvrement partiel des impacts successifs du faisceau) a été mise en œuvre pour étudier notamment le conditionnement éventuel de la silice à 3ω.

IV.2.1.6. Etude du vieillissement des composants dans l'UV profond.

Le vieillissement des composants dans l'UV profond est étudié dans le cadre d'un projet CREMSI avec les sociétés SESO et ST Microelectronics. La réduction de la taille des composants électroniques nécessite l'utilisation de procédés photolithographiques basés sur

des longueurs d'onde de l'ultraviolet : 248 nm, 193 et 157 nm. Ces procédés utilisent des matériaux et composants optiques spécifiques, notamment des composants multicouches et pour les plus courtes longueurs d'onde des optiques en CaF₂ dont les comportements sous irradiation UV sont mal connus. Des problèmes de vieillissement très rapide de ces optiques sont observés et conduisent aujourd'hui à des remplacements fréquents des optiques.

Les objectifs du projet sont d'étudier de façon détaillée les propriétés optiques en termes de diffusion et d'absorption de substrats en CaF₂ polis spécifiquement (basse rugosité) et de miroirs multicouches ainsi que leur évolution sous irradiation. Nous travaillons à la réalisation d'un dispositif de cartographie des défauts absorbants et diffusants à la longueur d'onde 244nm pour la caractérisation des optiques deep UV (financement Région PACA et Conseil Général).

IV.2.2. Activité optique non linéaire

Cette activité est tout d'abord consacrée à l'étude des phénomènes non linéaires de $2^{\text{ème}}$ et de $3^{\text{ème}}$ ordre dans les matériaux massifs et en couches minces. L'équipe s'est intéressée à la génération du 2^{nd} harmonique dans les couches minces de ZnS. Nous avons notamment observé un nouveau phénomène de *diffusion non linéaire du 2^{\text{nd}} harmonique* par les rugosités d'une couche mince unique. Un second volet a été consacré à la *caractérisation de « l'indice non linéaire » n_2 de la silice par une méthode de Z-Scan*. Cette caractérisation peut conduire à des résultats majeurs pour l'identification des processus d'endommagment (autofocus par hétérogénéités).

IV.2.2.1. Diffusion non linéaire du 2nd harmonique.

Dans le cas d'une couche mince unique de ZnS (matériau non centro-symétrique) éclairée par un faisceau laser intense (faisceau pompe), trois phénomènes physiques permettent de comprendre simplement les structures qui apparaissent dans le signal second harmonique diffusé (figure 5). Le premier phénomène est la diffusion du faisceau pompe par les rugosités de surface. Il donne lieu à l'indicatrice de diffusion habituelle mesurée en champ lointain (ondes propagatives). Un deuxième phénomène conjoint est l'excitation résonnante par cette même diffusion, des modes à fuites supportés par la couche mince (ondes évanescentes à l'extérieur) et non observable directement sur le signal diffusé. Ce phénomène est générateur en optique linéaire de l'absorption induite par diffusion. Le troisième phénomène est le résultat de l'interaction non linéaire (2nd harmonique) entre les ondes précédentes, suivie de leur diffusion. Le signal diffusé à la fréquence double est une signature de ces interactions et comporte une nouvelle structure (pics prononcés sur la figure 5) directement liée à l'interaction des modes à fuites à la fréquence pompe avec le champ incident. Ces surintensités dépendent des paramètres opto-géométriques à la fréquence pompe et permettent ainsi la caractérisation des propriétés linéaires par l'étude de la diffusion non

linéaire. Cette caractérisation ouvre aussi la possibilité à l'estimation de la distribution du champ local à la fréquence pompe.

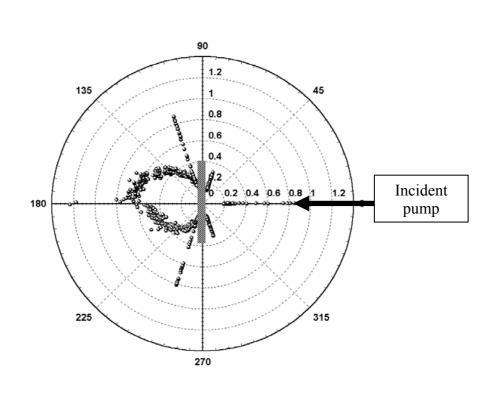


Figure 5 : Mesure de l'indicatrice de diffusion second harmonique d'une monocouche de ZnS

IV.2.2.2. Mesure de n₂ par une méthode de Z-Scan

Une grandeur caractéristique des matériaux centro-symétiques (de première importance dans les applications des lasers de puissance) est le paramètre n_2 qui tient compte à l'ordre le plus bas de l'interaction non linéaire d'un faisceau laser avec la matière (effet Kerr optique). Dans cette description macroscopique l'indice de réfraction en un point du matériau est donné par $n(I) = n_0 + n_2$ I où I est l'intensité laser (W/m²) au point considéré, n_0 l'indice de réfraction pour des intensités incidentes faibles (régime linéaire). Plusieurs dispositifs permettent la mesure du paramètre n_2 pour la silice dans le régime nano-seconde (pulses laser ~10ns). Nous avons adopté la méthode de Z-Scan qui consiste à déplacer l'échantillon au voisinage du foyer d'une lentille positive et à observer les variations de phase en champ lointain induites par les variations d'indice n(I). Expérimentalement, ces variations de phase sont converties en variations de transmission à travers un diaphragme calibré situé devant le détecteur. Une deuxième voie de référence permet d'avoir accès à une transmission normalisée. On donne sur la figure 6, un exemple de mesure de la transmission en fonction de

la position longitudinale (Z) de l'échantillon pour un échantillon de silice (λ =532nm). Est également tracé sur la figure 6, le résultat d'un ajustement avec un modèle théorique basé sur la propagation des faisceaux à symétrie circulaire dans les matériaux non linéaires. Cet ajustement permet, connaissant les caractéristiques géométriques et énergétiques du faisceau incident sur l'échantillon, d'estimer la valeur du paramètre n_2 . Celle-ci est estimée à $3.9 \pm 0.5 \, \text{m}^2/\text{W}$ pour λ = 532nm, valeur compatible avec d'autres mesures publiées. Actuellement, une modélisation plus complète est en cours d'élaboration pour s'affranchir des contraintes des modèles publiés (approximation paraxiale, échantillon mince, faisceau gaussien ...).

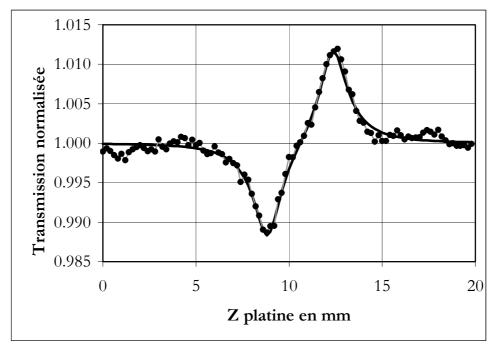


Figure 6 : Courbes de transmission normalisée, mesures expérimentales (•), modèle théorique (courbe continue)

Ce paramètre n_2 est essentiel pour les optiques des lasers de puissance et en particulier le laser Mégajoule car il conditionne la puissance critique à partir de laquelle le régime d'auto-focalisation apparaît. Cette étude entre dans le cadre d'une collaboration avec le CESTA.

IV.3. La diffusion lumineuse

Trois thèses ont été ou sont concernées par cette activité: Nathalie Destouches, Olivier Gilbert et Philippe Voarino.

L'activité diffusion lumineuse porte depuis de nombreuses années sur la compréhension et le contrôle des mécanismes des pertes optiques par les rugosités d'interface et les hétérogénéités de volume dans les systèmes interférentiels multicouches. Longtemps consacrée aux systèmes à diffusion minimale pour l'optique de précision, l'activité s'est

ouverte plus récemment à l'étude de composants fortement hétérogènes, pour des applications de type « absorbeurs de lumière » ou « poudres optiques artificielles », en lien étroit avec la microscopie à champ proche pour une analyse multi-échelle appropriée.

Du point de vue expérimental, l'outil de mesure a considérablement évolué ces trois dernières années, fournissant une référence incontestée (tables rondes nationales et internationales) pour la métrologie et l'analyse des flux diffusés transportés par quelques photons dans chaque direction de l'espace. Avec une dizaine d'axes motorisés, l'instrument permet en effet de varier ou choisir automatiquement l'incidence d'éclairement ou de diffusion, la position angulaire ou linéaire de l'échantillon, le choix des sources et des détecteurs, le positionnement relatif des analyseurs et polariseurs tournants...

La modélisation a elle aussi considérablement évolué, et permet aujourd'hui de prédire les diagrammes d'émission libre ou piégée issus de sources confinées dans des structures de type microcavités multicouches, dissipatives ou transparentes, planaires ou sphériques. Parallèlement, des avancées notoires ont été obtenues pour la résolution immédiate de problèmes inverses liés à la séparation d'effets de surface ou de volume. L'ensemble de ces outils trouve des applications nombreuses qui vont du contrôle de l'émission spontanée à la cosmétique, les peintures et textiles, le bafflage ou la lumière parasite, la vision... Nous rappelons brièvement ci-dessous l'essentiel des résultats et des efforts consacrés à cette activité depuis la création de l'Institut Fresnel (1999) :

IV.3.1. Métrologie des surfaces polies transparentes

Une faiblesse récurrente des techniques de diffusion pour la caractérisation d'états de surface réside dans sa limitation aux surfaces opaques. Ce problème n'avait jusqu'ici jamais été résolu, en dépit du champ d'applications considérable sous-jacent à sa résolution. C'est pourquoi nous avons mis en place des moyens conséquents, dans le cadre d'un projet européen (CRAFT), pour proposer des solutions concrètes et pratiques qui devraient déboucher d'ici moins de 18 mois. Ces solutions, pour l'instant stratégiques, devraient redynamiser de façon considérable la métrologie des polis optiques par les techniques de diffusion lumineuse.

IV.3.2. Applications télécoms

Les progrès des techniques de polissage, qui ramènent aujourd'hui la rugosité à une fraction d'Angström sur certains matériaux, auraient dû réduire les efforts consentis pour analyser et contrôler les hétérogénéités dans les composants à faibles pertes. L'explosion des télécommunications optiques a modifié cette prédiction, en raison du rôle crucial joué par les filtres DWDM présentant des bandes passantes inférieures au nm ; de tels filtres mettent en

jeu des sur-intensités considérables qui amplifient de façon notoire les pertes par diffusion, qu'on ne peut plus négliger même dans le cas des meilleurs polis. Par ailleurs, les multicouches WDM sont souvent constitués de plus d'une centaine de couches minces, accroissant ainsi le nombre d'interfaces et de défauts de nature volumique. Nos logiciels de calcul ont tout d'abord été étendus à ces composants, en même temps que l'instrument sur lequel ont été installées des sources télécoms accordables (1,55 microns). La **figure 7** illustre ces travaux à l'aide d'un diagramme « téta-lambda » donnant la diffusion angulaire en réflexion et transmission d'un DWDM dans la bande télécom. Précisons ici que cette analyse a joué un rôle majeur dans la mise au point de composants à forte transmission (collaboration RCMO/Fresnel), en lien étroit avec les industriels des télécommunications (High-Wave, DICON et société japonaise). Des négociations sont en cours avec d'autres grands industriels implantés en France.

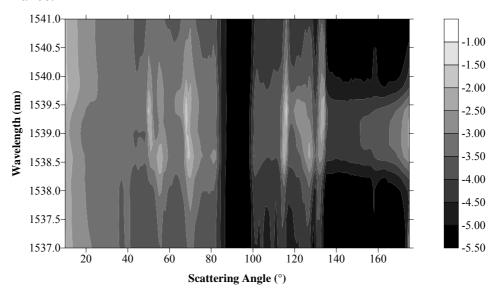


Figure 7 : Mesure de diffusion angulaire et spectrale d'un filtre DWDM (bande passante inférieure au nm)

IV.3.3. Ellipsométrie sur champ diffus

Une question récurrente a également toujours concerné l'origine des flux diffusés par un composant hétérogène : « est-on capable, par une simple collection de lumière diffuse dans une direction particulière en champ lointain, d'affirmer que la source de lumière est de nature surfacique ou volumique » ? Pour résoudre ce point, nous avons mis en place une technique d'ellipsométrie sur champ diffus qui donne accès aux variations angulaires du déphasage polarimétrique de l'onde diffusée. La conception de la méthode et sa mise en œuvre a été une priorité ces deux dernières années, et les résultats sont à la hauteur des espérances, puisque

nous disposons aujourd'hui d'une méthode quasi-unique pour caractériser sans ambiguïté les volumes des composants optiques, en particulier les substrats, comme illustré en figure 8.

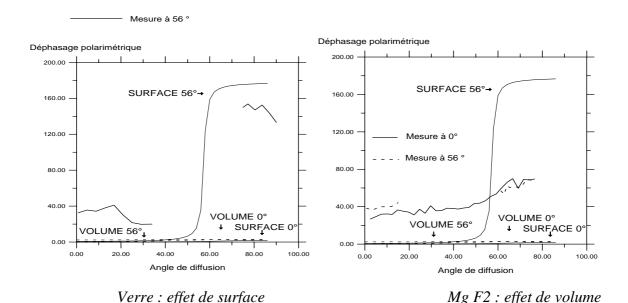


Figure 8 : Variations expérimentales et théoriques du déphasage polarimétrique pour différentes valeurs de l'angle d'incidence (0° et 56°), mettant en évidence une diffusion d'origine surfacique pour un échantillon de verre, et volumique pour un échantillon de MgF₂.

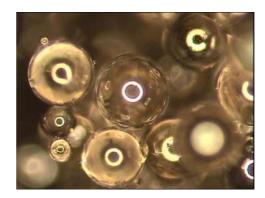
Actuellement les polariseurs/analyseurs tournants sont en cours de remplacement par des techniques basées sur la modulation de polarisation, et devraient offrir un gain de temps appréciable pour l'acquisition des données, dynamisant encore les investigations. En particulier des méthodes d'étalonnage de rugosité basées sur une simple mesure de déphasage sont à l'étude. Ces techniques permettent également, via une interférence judicieuse des flux diffusés par chaque polarisation, d'éliminer toute diffusion de surface ou de volume issue d'objets faiblement perturbés, pour une meilleure scrutation en profondeur ou en surface.

IV.3.4. Interférométrie de speckle

Les méthodes de diffusion donnent accès aux moments statistiques des irrégularités, sans permettre de reconstruire véritablement la topographie des surfaces. Cette limitation a également freiné l'introduction de nos techniques dans le milieu industriel. Pour résoudre ce point, nous avons réalisé une interférométrie de speckle entre deux flux diffusés par le même échantillon, de façon à conserver un terme de phase absolue caractéristique de la topographie. Ces techniques ont d'ores et déjà fait leurs preuves (collaboration TEM/Fresnel), à l'aide d'échantillons témoins de type réseaux de diffraction.

IV.3.5. Analyse multi-échelle du speckle

Nous avons également abordé l'étude haute résolution des flux diffusés, pour appréhender le détail des propriétés du speckle à différentes échelles. L'objectif ici consiste à extraire des paramètres pertinents non accessibles par une mesure basse résolution, afin de discriminer des surfaces à priori identiques. Par ailleurs, nous avons montré que cette technique était applicable à la séparation des effets de surface et de volume, fournissant une méthode alternative simple à mettre en œuvre, et sans requête d'étalonnage.


IV.3.6. Caractérisation de poudres colorées intrinsèques

La caractérisation de poudres optiques et peintures colorées demeure un problème difficile et d'actualité pour nombre d'industriels. En d'autres termes, on voudrait ici extraire l'indice de réfraction complexe des poudres par les techniques de lumière diffuse. Nous avons mis au point deux méthodes pour cela, plus ou moins lourdes à mettre en œuvre ; la première fait appel à une analyse conjointe de la diffusion et la microscopie à force atomique, et la seconde nécessite l'acquisition de flux diffusés après dépôt d'une couche mince sur la poudre. Chacune de ces méthodes donne des résultats probants, et nous attendons des validations complémentaires sur un lot d'échantillons de natures différentes.

IV.3.7. Poudres optiques multicouches

Enfin, la réalisation de poudres interférentielles transparentes permettrait de synthétiser et contrôler les spectres de composants destinés à fonctionner en lumière diffuse. Ce dernier objectif nous a demandé des efforts considérables, du point de vue technologique (collaboration RCMO/Fresnel), expérimental, théorique (collaboration TEM/Fresnel) et financier (ACI, JE, Région PACA, Conseil Général, Ville de Marseille). Cette action nous permet aujourd'hui d'être en mesure de recouvrir des microsphères avec des systèmes interférentiels multicouches, ouvrant ainsi la porte à de nouvelles applications prometteuses, en particulier dans le domaine de la cosmétique, la vision et les microcavités... Une photo au microscope de billes recouvertes d'aluminium par une technique spécifique mise en place comme évoqué précédemment, est donnée en figure 9. Chaque bille se comporte comme un petit miroir.

Billes de silice (100µm) non traitées

Billes de silice (100 µm) aluminées

Figure 9 : Dépôt concentrique de couche mince sur des microbilles, par une technique spécifique

IV.4. Les capteurs d'image en technologie CMOS

L'équipe a démarré en juillet 2001 une nouvelle activité en collaboration avec ST Microelectronics portant sur la **modélisation optique des composants pour imagerie CMOS**, dans le cadre de conventions STSI (2001-2002 et 2002-2003). Un pixel de capteur d'image en technologie CMOS est constitué de sous pixels colorés rouge, vert et bleu obtenus par différentes étapes de photolithographie sur des résines colorées. Chaque sous pixel est constitué verticalement d'une quinzaine de couches diélectriques oxyde/nitrure. Une microlentille permet d'optimiser le couplage de la lumière dans le pixel. La structure du pixel est complexe, il doit néanmoins conserver la transmission optique la plus élevée possible ainsi qu'une réponse électrique de la photodiode de base élevée, uniforme d'un pixel à l'autre et minimisant la pollution interpixels.

Nous avons choisi deux logiciels TRACE PRO et ISE qui permettent d'obtenir des résultats complémentaires. TRACE PRO est un logiciel de calcul optique qui permet par tracé de rayons et photométrie de suivre le cheminement des différentes longueurs d'onde dans l'empilement et d'étudier le rôle de la micro lentille. ISE, dédié à la simulation de composants microélectroniques, possède un module de calcul optique qui résout les équations de Maxwell par une méthode aux éléments finis et par là-même permet de prendre en compte les phénomènes de diffraction lors d'une réduction de la taille du pixel.

Le pixel a été entièrement modélisé en 3D avec TRACE PRO à partir des propriétés des différentes couches mesurées en partie à ST Microelectronics et en partie à l'institut Fresnel. Les problèmes de focalisation de la lentille et de diaphotie entre pixels ont été étudiés. Des structures de test destinées à valider le modèle ont été réalisées par ST et ont été caractérisés

du point de vue efficacité quantique (figure 10). Les études avec ISE sont en cours. Une thèse CIFRE avec ST Microelectronics Crolles débute en octobre 2002 sur cette thématique.

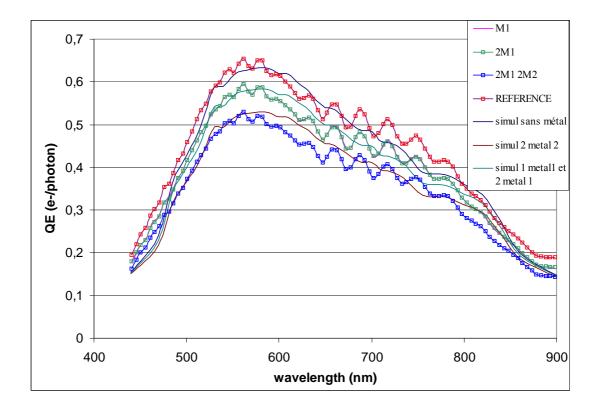


Figure 10 : Comparaison des efficacités quantiques QE expérimentales et simulées

IV.5. Conclusion et prospective

Les thèmes évoqués seront en général poursuivis dans les prochaines années. Le recrutement de deux maîtres de conférences à la rentrée 2003 doit contribuer à renforcer les activités photonique de puissance et diffusion lumineuse, et pallier aux nombreux départs qu'a subis l'équipe (2 congés de fin d'activité et le transfert d'un DR à la direction de l'Institut). Précisons également que la période 99-02 a donné lieu à 3 congés de maternité et 1 séjour d'un an à l'étranger d'un chercheur, qui ont momentanément ralenti la production scientifique de l'équipe, pour un meilleur investissement sur l'avenir.

Les problèmes croissants de tenue au flux vont nous conduire à accentuer notre activité dans le contexte des grands programmes nationaux et européens, avec des ouvertures vers la microélectronique (photolithographie et vieillissement des optiques UV), le biomédical et les micro-composants de puissance (diodes laser, OPO...). A terme notre plate-forme « Photonique de puissance » (avec LP3 FRE 2165 CNRS, le GPEC via la plate-forme PIALA (Luminy), et les sociétés SESO, CILAS) en cours de création a pour vocation de devenir un pôle national d'expertise, ainsi qu'une référence internationale dans le domaine de la compréhension de la tenue au flux (gamme UV-IR) aussi bien dans les domaines continu

qu'impulsionnel. Cette plate-forme a été labellisée par POP SUD et a obtenu le soutien du ministère et du CNRS. Une demande FEDER est en cours sur ce projet. Par ailleurs, nous avons engagé des études par microscopie électronique (SEM, FIB, EDS...), pour accéder à des informations physico-chimiques localisées (collaboration CP2M), ainsi que des études de diffusion Brillouin avec le laboratoire des verres de Montpellier afin de mettre en évidence des modifications de structure (densification, cristallisation...) dans la silice irradiée sous flux.

En ce qui concerne l'activité diffusion lumineuse plusieurs verrous devraient être définitivement levés à moyen terme, et concernent de nouvelles techniques de caractérisation des substrats transparents (contrat CRAFT qui débute), les techniques d'ellipsométrie sur champ diffus (collaboration lab. Drevillon- X), la synthèse et réalisation de poudres multicouches (GDR « couleur » en préparation), l'analyse multi-échelle du speckle...

La continuation de la thématique imageurs CMOS est prévue dans le cadre de la convention STSI 2002-2003. Elle s'accompagnera aussi d'étapes de caractérisations optiques de l'imageur et des diélectriques ainsi que d'une étude du filtrage infrarouge qui impliquent aussi d'autres équipes de l'institut Fresnel (RCMO et COM).

Enfin l'équipe est impliquée dans le projet Microélectronique PACA (qui rassemble les différents laboratoires concernés et les industriels) en ce qui concerne la diffusion lumineuse et les imageurs CMOS.

IV.6. Ravonnement/Diffusion de l'Information Scientifique/Compléments

- M. Commandré est membre du CA du CREMSI (Centre Régional pour la Microélectronique)
- M. Commandré est membre du comité du réseau CNRS « Cristaux Massifs pour l'Optique »
- C. Amra est membre permanent du comité international du congrès annuel « Laser-Induced Damage in Optical Materials » dévolu à l'endommagement laser
- C. Amra est membre permanent du comité international du congrès quadriennal annuel « Optical Interference Coatings » dévolu aux couches minces optiques et thématiques associées
- C. Amra a organisé en Juin 99 le congrès « Optical Interference Coatings », Berlin
- C. Amra organisera en Septembre 2003 le congrès « Optical Interference Coatings », Berlin
- C. Amra a organisé, avec l'association Pop Sud, la journée nationale « Couches Minces Optiques » à Marseille, Février 2001

- C. Amra est membre du CA de Pop Sud
- Les techniques spécifiques de diffusion lumineuse, endommagement laser et microscopie photothermique qui sont mises au point au sein de l'équipe MAP2 ont été enseignées sur la scène nationale via :
 - o 2h30 de cours à l'école CNRS des Houches, Avril 2001
 - o 1h de cours au séminaire Dautreppe, Grenoble 2002
 - o 1h d'exposé aux Ateliers de l'Astronomie, Grenoble 2001
- Ces mêmes techniques ont fait l'objet de tables rondes internationales, dont 2 sur la diffusion lumineuse et 1 sur la métrologie de l'absorption, avec publications associées
- J. Y. Natoli a effectué un séjour d'une année aux USA (Livermore lab) dans le butde lancer l'activité *Endommagement Laser* à l'Institut

Précisons également que Mireille Commandré a développé pour l'ENSPM une forte activité dans le domaine de la Microélectronique, dont elle est responsable d'axe pédagogique. En plus de son implication dans les Conseils d'Orientation Scientifique et Conseil d'Administration du CREMSI, on peut citer la création en 1999 d'un mastère de la Conférence des Grandes Ecoles en partenariat avec ST University, l'Université d'entreprise de ST Microelectronics ainsi que la création en 2001 d'un pôle CNFM (Comité National de Formation en Microélectronique) en Région PACA, dont elle est membre des Conseils d'Administration et Pédagogique. Cette activité permet aujourd'hui de nouvelles ouvertures pour les thématiques de recherche, notamment dans les domaines des méthodes optiques pour la microélectronique (en particulier propagation électromagnétique et diffusion) et des composants pour imagerie CMOS. Ceci permet à l'Institut de prendre part activement aux différents projets de type micro-électronique en PACA.

IV.7. Doctorants MAP2

IV.7.1. Doctorants présents au 01 Septembre 02

Nom, Prénom	Date de Naissance	Date d'arrivée dans l'unité	Type de bourse	Direction de thèse	DEA d'origine	date de soutenance
BERTUSSI Bertrand	16/03/1978	2002	DGA	M. COMMANDRE / J.Y. NATOLI	Optique, Image et Signal	2005
BILLARD Franck	28/04/1978	2001	M.E.N.R.T.	H. AKHOUAYRI	Optique, Image et Signal	2004
GILBERT Olivier	12/10/1977	2000	CNRS/CNES	C. DEUMIE / C. AMRA	Rayonnement et Plasmas	2003
VOARINO Philippe	12/05/1977	2000	C.N.R.S. Région	C. DEUMIE / C. AMRA	Optique, Image et Signal	2003
DURING Anne lise	02/02/1977	1999	C.N.R.S. Région	M. COMMANDRE	Optique, Image et Signal	Déc. 2002

GALLAIS Laurent	23/09/1976	1999	D.G.A.	J-Y NATOLI / C. AMRA	Optique, Image et Signal, Marseille	Nov. 2002
OLIVIER Thomas	01/06/1974	1999	M.E.N.RT	H. AKHOUAYRI	Optique, Image et Signal, Marseille	2003

IV.7.2. Thèses soutenues (99-02)

Nom, Prénom	Type de bourse	Direction de thèse	DEA d'origine	date de soutenance	Devenir professionnel
DESTOUCHES Nathalie	C.N.R.S. Région	H. GIOVANNINI / C. DEUMIE	Optique, Image, Signal	х	Post. Doc
VOLTO Patricia	CIFRE	J.Y. NATOLI / C. AMRA	Optique, Image, Signal	x	Ent.
GATTO Alexandre	DGA	M. COMMANDRE / P. ROCHE	Optique, Image, Signal	x	Entr.
GAGLIANO	DGA	M. COMMANDRE		Х	

IV.8. MAP2: Production scientifique

13 RICL, 27 Proc et 6 CI et 2 Bookch

IV.8.1. Publications dans revues internationales avec comité de lecture

- 13 C. Deumié, P. Voarino and C. Amra,, "Overcoated microspheres for the specific optical powders. ", Applied Optics, Vol.41, No.16, pp. 3299-3305, 2002.
- C. Deumié, H. Giovannini and C. Amra, "Angle-Resolved ellipsometry of light scattering :discremination of surface and bulk effects in substrates and optical coatings", Applied Optics, Vol.41, No.16, pp. 3362-3369, 2002.
- N. Destouches, C. Deumié, H. Giovannini and C. Amra, "Refractive index of optical powders", submitted to Applied Optics.
- Natoli J.Y., Gallais L, Akhouayri H., Amra C., "Laser-induced damage of materials in bulk, thin-film and liquid forms", Applied Optics, Vol.41, No.16, pp.3156-3166, 2002.
- 9 During A., Fossati C., Commandré M.,, "Multi-wavelength imaging of defects in UV optical materials", Applied Optics, Vol.41, No.16, pp.3118-3126, 2002.
- 8 L.Gallais and JY.Natoli, "Optimized metrology for laser measurement and associate multiparameters study", to be published in Applied Optics.
- F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin L. Gallais, J. Y. Natoli, M. Perra H. Bercegol, L. Lamaignère, M.Loiseau J. T. Donohue, "Study of UV laser interaction with gold nanoparticles embedded in silica", to be published in Applied physique B.

- Gatto A., Commandré M.,, "Multiscale mapping technique for the simultaneous estimation of absorption an partial scattering in optical coatings", Applied Optics, Vol.41, No.1, pp.225-234, 2002.
- Destouches N., Guerin Ch.A., Lequime M., Giovannini H.,, "Determination of the phase of the diffracted field in the optical domain Application to the reconstruction of surface profiles", Optics Communications, Vol.198, No.4-6, pp.233-239, 2001.
- Destouches N., Giovannini H., Lequime M., "Interferometric measurement of the phase of diffracted waves near the plasmon resonances of metallic gratings", Applied Optics, Vol.40, No.31, pp.5575-5582, 2001.
- Gervaise C., Gagliano O., Serra J-J, Commandré M., al., "Local thermal characterization of inner gun tube refractory metallic coatings", Microscale Thermophysical Engeenering, Vol.5, No., pp.209-223, 2001.
- N. Destouches, M. Lequime and H. Giovannini and C.A. Guerin, "Determination of the phase of the diffracted field in the optical domain. Application to the reconstruction of surface profiles", Opt. Comm. vol. 198, pp. 233-239, 2001.
- 1 Kadkhoda P., Amra C., Bennett J.M., Deumié C., Duparré A., et al., "International round-robin experiment to test the ISO Total scattering draft standard", Applied Optics, Vol.39, No.19, pp.3321-3332, 2000.

IV.8.2. Communications avec actes

- F. Bonneau, P. Combis, J. L. Rullier, M. Pellin, M. Savina, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignère, M. Loiseau, "Using a TOF mass spectrometer for studies of laser interaction with 3 nm diameter gold nanoparticles embedded in silica", Conf. 34th "Annual symposium on optical material for high power lasers", Boulder, Colorado, USA, 18-20 Sept., 2002, a paraître dans SPIE n?, pages?
- Gallais L., Amra C., Natoli J-Y., "Calculated and measured thermally laser damage in metallic thin films, as a function of pulse duration", Conf. 34th "Annual symposium on optical material for high power lasers", Boulder, Colorado, USA, 18-20 Sept., 2002 (a paraître dans SPIE n?, pages?).
- F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, L. Gallais, J. Y. Natoli, H. Bercegol, L. Lamaignère, P. Bouchut, "Comparison of numerical simulations with experiment on generation of craters in silica by laser", Conf. 34th"Annual symposium on optical material for high power lasers", Boulder, Colorado, USA, 18-20 Sept., 2002, a paraître dans SPIE n?, pages?
- J. Y. Natoli, L. Gallais, H. and C. Amra, "Detection of nano-defects in different glasses for bulk and surfaces using laser damage investigations", Proceeding of 2002 Glass Odyssey 6th ESG Conference June 2-6, 2002 Montpellier (CD-ROM)..
- During A., Fossati C., Commandré M., "Development of a photothermal deflection microscope for multiscale studies of defects Annual symposium on optical material for high power lasers", Laser-induced damage in optical materials: 2001, proceedings of SPIE 4679, pp.400-410,2002.
- J. Y. Natoli, L. Gallais, M. Perra, F. Bonneau, P. Combis, J. L. Rullier, P. Bouchut, L. Lamaignère, "Experimental results of laser interaction with included gold particles in silica at 1w and 3w", Conf. 34th"Annual symposium on optical material for high power lasers", Boulder, Colorado, USA, 18-20 Sept., 2002 (a paraître dans SPIE n?, pages?).
- H. Bercegol, F. Bonneau, P. Bouchut, P. Combis, J. Donohue, L. Gallais, L. Lamaignère, C. Le Diraison, M. Loiseau, J. Y. Natoli, C. Pellé, M. Perra, J. L. Rullier, J. Vierne, H. Ward, "Laser ablation of fused silica induced by gold nano-particles: Comparison of

- simulations and experiments at 351 nm", SPIE vol 4760 Conference Hight-Power Laser Ablation 2002 Taos-New Mexico USA 21-26 April 2002.
- J. Y. Natoli, L. Gallais, B. Bertussi, "Toward an absolute measurement of Laser Induce Damage Threshold", Conf. 34th"Annual symposium on optical material for high power lasers", Boulder, Colorado, USA, 18-20 Sept., 2002, a paraître dans SPIE n?, pages?
- Natoli J.Y., Gallais L, Akhouayri H., Amra C., "A quantitative study of laser damage probabilities in silica and calibrated liquids:comparison with theoretical prediction", Proc. SPIE, Vol.4347, No., pp.295-305, 2001.
- 18 Chow R., Taylor, J.R., Wu,Z.L., Boccara C., Broulik C., Commandré M. et al., "Absorptance measurements of optical coatings- A Round Robin", Proc. Laser-induced Damage in Optical Matérials, Vol.4347, No., pp.62-73, 2001.
- Gagliano O., Serra J-J., Bénet S., Commandré M., "Caractérisation thermophysique à micro-échelle de revêtements métalliques", Actes des journées SFT, Paris, Vol., No., pp., 2001.
- Gallais L., Natoli J-Y., Akhouayri H., "CW and nano-second laser irradiation on materials: elements of comparison of thermal effects", Conf. 32th "Annual symposium on optical material for high power lasers", Boulder, Colorado, USA, October, 2000; SPIE, Vol.4347, No., pp.502-508, 2001;
- Natoli J.Y., Deumié C., Amra C., "Laser-Modulated Scattering from optical surfaces using faber detection", SPIE, Vol.3902, No., pp.128-137, 2001.
- Gagliano O., Commandré M., Suzanne P., Serra J-J., Claudet B.,, "Mesure des propriétés thermiques des revêtements métalliques réfractaires à micro-échelle, par une technique de photoréflexion modulée", Actes du Coloque "Contrôles et Mesures Optiques pour l'Industrie" Tregastel, Vol., No., pp., 2001.
- Deumié C., Destouches N., Giovannini H., Amra C., "Angular scattering and ellipsometry of the scattered field: Multiscale roughness and contamination of surfaces", Proceedings of the 4th international Conference on space optics, ICSO 2000, Vol., No., pp.445-454, 2000.

- Gervaise C., Gagliano, Serra J.J. Commandré M. Serror S., "Local thermal characterization of inner gun tube refractory metallic coatings", Proceeding of "Heat transfer and transport phenomena in microsystems", Banff, Canada, Vol., No., pp., 2000.
- Gatto A., Commandré M.,, "Multiscale mapping technique for the simultaneous estimation of absorption an partial scattering in optical coatings", SPIE, Vol.4099, No., pp.110-123, 2000.
- Boucher Y., Deumié C., Amra C., Pinard L., Mackowski et al.,, "Round robin of painted targets BRDF measurements", Inorganic Optical Materials II, Alexander J. Marker III, E.G. Arthurs, Editors SPIE Proc., Vol.4102, No., pp.261-275, 2000.
- Deumié C., Destouches N., Cathelinaud M., Albrand G., Cassagne C., Amra C., "Optical Materials in powder forms: characterization techniques,", EUROPTO, Conf. Advances in Optical Interference Coatings, Berlin, Vol.3738, No., pp 417-425., 1999.
- Deumié C., Destouches N., Giovannini H., Amra C., "Polarimetric phase measurement for the detection of contaminants on optical surfaces", EUROPTO, Conf. Advances in Optical Interference Coatings, Berlin, Vol.3738, No., pp.401-409, 1999.
- Lequime, Destouches N., Giovannini H., "A new interferometric method for the complete determination of the properties of the light field scattered by a rough surface", Advances in Optical Interference Coatings, Vol.3738, pp.381-386, 1999.
- P. Kadkhoda, C. Amra, J.M. Bennett, C. Deumié, A. Duparré et al., "International round-robin experiment on Optical Total Scattering at 633nm According to ISO/DIS 13696", Optical Fabrication and Testing, SPIE, Vol. 3738, pp. 417-425, 1999.
- 5 Lequime M., Deumié C., Amra C., "Light scattering from WDM filters", Advances in Optical Interference Coatings, Vol. 3738, pp.268-277, 1999.
- Z.L. Wu, M.D. Feit, M.Kozlowski, J.Y. Natoli, A. Rubenchik, L. Sheehan and M. Yan, "Single-beam photothermal microscopy a new diagnostic tool for optical materials", Proc. SPIE 3578, 226-234, 1999.
- Gatto A., Commandré M., Roche P., "Statistical distribution of optical losses in thin films through increasing spatial windows", EUROPTO, Conf. Advances in Optical Interference Coatings, Berlin, Vol.3738, No., pp., 1999.

- C. Mahodaux, H. Rigneault, L. Gallais, A. Gatto, P. Moretti, "Stress in dielectric thin films: evolution with annealing and ion implantation", Conf. Advances in Optical Interference Coatings, Berlin, SPIE Europto Vol.3738, No., pp 146-157, 1999.
- Amra C., Deumié C., Natoli J.Y., Commandré M.,, "Topographie multi-échelle pour le filtrage optique multicouche large-bande", J. Phys. IV France, Vol.11, No., pp.Pr7-53 Pr7-56, 2001.

IV.8.3. Conférences invitées dans des congrès internationaux

- M. Commandré, JY. Natoli, L. Gallais, « Photothermal Microscopy and Laser Damage », Advanced Optics for Microelectronics, SPIE San Diego, Août 2003
- M. Commandré, JY. Natoli, « High resolution Photothermal Microscopy", annual Worshop "New trends in Optical Design", Marseille, Février 2003
- 4 C. Amra, C. Deumié, "Light scattering: a powerful non destructive probe", International Meeting of Brasilian Physical Society, Caxambu 2002.
- C. Amra, M. Lequime, C. Deumié, "Light Scattering from DWDM filters", Laser Induced Damage in Optical Materials, Boulder 2001.
- Amra C., Deumié C., Natoli J-Y, Commandré M., Torchio Ph., "Topographie multi-échelle pour le filtrage optique multicouche large-bande", 5ème Colloque sur les sources cohérentes et incohérentes UV, VUV, X, Ile de Porquerolles, Mai, 2000.
- Giovannini H., Sentenac A., C. Deumié, Amra C., "Scattering from overcoated rough structures-Application to the reduction of scattering", EUROPTO, Conf. Advances in Optical Interference Coatings, Berlin, SPIE Vol.3738, N, pp.376-379, 1999.

IV.9. MAP2: Bilan financier

IV.9.1. Contrats de recherche référencés R3

ANNEE	Contrat	Compte N°	Equipe	Resp.	Montant HT en EUROS	TOTAL par année	Solde au 17.10.02
1999	CEA VALRHO	709 R3	MAP2	Commandré	26 678.58	26 678.58	307.28
2000	CEA VALRHO	721 R3	MAP2	Commandré	19 818.37	19 818.37	8 328.44
	DGA	722 R3	MAP2	Natoli	26 545.95		933.85
2001	IRSID	730 R3	MAP2	Deumié	14 999.92		7 572.08
	DGA	ADER	MAP2	Commandré	30 489.80	72 035.67	0.00
	Min. E. Finance Ind.	736 R3	MAP2	Commandré	60 000.00		8 719.45
2002	DGA	ADER	MAP2	Commandré	43 000.00		0.00
2002	Min. E. Finance Ind.	En cours	MAP2	Commandré	190 000.00		190 000.00
	ESSILOR	739 R3	MAP2/RCMO	Lequime/Deumié	10 750.00	303 750.00	10 092.00
	Total MAP2						225 953.10
	MOYENNE SUR 4 ans						

IV.9.2. Contrats de recherche référencés C

ANNEE	Contrat	Fact n°	Equipe	Chercheur	Date	Montant HT en EUROS	TOTAL par année	Solde au 17.10.02
1999	SESO (3)	F101	MAP2	Akouayri	02/01/1999	228.67		
	CEA Limeil	F102	MAP2	Commandré	22/01/1999	10 671.43	10 900.10	
2000	THOMSON Sextant	F154	MAP2	Deumié	14/09/2000	3 048.98	3 048.98	
	CTA - DGA	F203	MAP2	Commandré	10/04/2001	11 229.73		
	SAGEM	F206	MAP2	Deumié		7 774.90		
2004	CEA DAM Le Ripault	F205	MAP2	Commandré	17/06/2001	1 524.49		
2001	CEA CESTA	F211	MAP2	Commandré	19/11/2001	42 685.72		
	CEA DAM Le repault	F209	MAP2	Commandré	15/01/2001	2 439.18		
	CEA DAM lle de France	F210	MAP2	Natoli	11/09/2001	4 573.47	70 227.50	
	CEA Le Ripault 3	F2-22	MAP2	Commandré	15/01/2002	4 573.50		
0000	CEA Le Ripault 4	F2-21	MAP2	Commandré	21/03/2002	1 829.39		
2002	CEA lles de France	D2-25	MAP2	Natoli	23/07/2002	20 000.00		
	CEA CESTA 3	F2-23	MAP2	Commandré	21/01/2002	45 735.00	72 137.89	
		TOTAL 19		156 314.48		0.00		
		Moyenne s	39 078.62					

IV.9.3. Opérations spécifiques CNRS

ANNEE	Origine	CDP	Equipe	Chercheur	Montant HT en EUROS	TOTAL par année
2000	CNRS Action Incitative	2JE 153	MAP2	Deumié	10 671.43	10 671.43
2001	CNRS Action Incitative	2F1 153	MAP2	Deumié	14 025.31	14 025.31
2002	CNRS Action Incitative	2A4 153	MAP2	Deumié	15 240.00	15 240.00
		39 936.74				
	Mo	107 773.69				

IV.9.4. Subventions collectivités territoriales

ANNEE	Contrat	Compte N°	Equipe	Chercheur	Montant HT en EUROS	TOTAL par année	Solde au 17.10.02
2001	Conseil Général	727 R3	MAP2	Deumié	45 734.71		520.78
2001	Conseil Régional	729 R3	MAP2	Deumié	15 244.90	15 244.90	10 847.63
	Conseil Général	733 R3	MAP2	Commandré	83 846.00		9 994.53
	Conseil Régional	734 R3	MAP2	Commandré	35 435.00		35 435.48
2002	Conseil Régional	735 R3	MAP2	Commandré	22 867.00		0.00
	Ville Marseille	737 R3	MAP2	Deumié	15 244.00	157 392.00	0.00
	Total MAP2						
	Moyenne sur quatre ans						

IV.9.5. Contrats européens

2002	CRAFT		MAP2	Deumié	208 600.00	811 945.38
		Total MA	208 600.00			
	MO	YENNE su	52 150.00			

EQUIPE PHYTI: EFFECTIFS

Nom, Prénom	Date de naissance	Corps, Grade	Section CNU ou CNRS	HDR	Date d'arrivée dans l'unité	Etablisement d'affectation	
BERTAUX Nicolas	févr-70	MC	61		sept. 00	E.N.S.P.M.	1.00
GOUDAIL François	janv-70	MC	61		oct. 98	E.N.S.P.M.	1.00
REFREGIER Philippe	août-60	PR1	61	X	oct. 94	E.N.S.P.M.	1.00
ROCHE Muriel	déc-75	MC	61		sept02	E.N.S.P.M.	1.00

Soit, en effectifs temps plein (hors administration) : 4

Dont 0 chercheur CNRS, 1 délégation CNRS

Et 1 HDR

V - EQUIPE P.H.Y.T.I. : BILAN SCIENTIFIQUE

V.1. <u>Déclaration succincte de la politique scientifique</u>

L'équipe "Physique et traitement de l'image" développe des techniques statistiques de traitement d'image en relation étroite avec l'optronique et la physique de l'image. Son domaine d'action concerne ainsi le traitement numérique des images et l'étude de nouveaux systèmes d'imagerie optronique. Sur ce dernier sujet, l'équipe Phyti travaille en collaboration avec d'autres équipes industrielles ou universitaires qui possèdent les moyens expérimentaux nécessaires. Elle apporte alors son expertise sur les techniques statistiques de traitement et de modélisation des images. Elle développe des techniques statistiques optimales dans les cas où les techniques génériques sont peu adaptées aux problèmes à résoudre.

Nous sommes convaincus qu'il existe un besoin pour des équipes de recherche en traitement d'images qui possèdent également des compétences reconnues en optique et en optronique. En effet, il n'y a en France que peu d'équipes de recherche qui réalisent des travaux relevant du traitement du signal et des images et qui possèdent des compétences en optique qui se traduisent, par exemple, par des publications dans des revues ou des colloques scientifiques dans ce domaine. Il s'agit d'une situation originale qui diffère avec celle présente dans les autres pays industrialisés et en particulier au Japon et aux Etats Unis d'Amérique.

V.2. Présentation des projets et prospective pour les 4 années à venir

Notre domaine d'action concerne le traitement numérique des images fortement bruitées, pour des applications telles que la détection et la segmentation. Nous nous intéressons en particulier au développement de techniques de traitement adaptées à des systèmes d'imagerie innovants tels que les imageurs actifs (optroniques et radar), polarimétriques et hyperspectraux.

Depuis 2002 l'activité a été restructurée essentiellement autour de deux thèmes et cette politique sera poursuivie. En réalité, ces deux thèmes possèdent un grand recouvrement entre eux et, vu la faible taille de l'équipe, nous ne souhaitons pas développer des thèmes de recherche disjoints.

V.2.1. Thème 1 : Segmentation d'images à l'aide de techniques statistiques

<u>Participants</u>: N. Bertaux MCF à 100 %, F. Galland Doctorant à 100 %, Ph. Réfrégier Pr à 50 %, à partir de septembre 2002 : M. Roche MCF à 50 % et P. Martin Doctorant à 100%.

La technique de contour actif statistique que nous avions développée lors du plan quadriennal précédent a été utilisée par différentes équipes françaises et européennes. L'ensemble des résultats accumulés avec les contours actifs statistiques (images optiques, SAR, etc.) nous ont convaincu de la pertinence de poursuivre nos études sur ce sujet. Pour étendre le champ d'application de ces techniques, nous avons considéré essentiellement deux directions que nous allons maintenant évoquer.

Afin de diminuer le niveau de supervision nécessaire, nous avons développé une nouvelle technique de segmentation qui repose sur une méthode issue de la théorie de l'information et qui consiste à minimiser la complexité stochastique introduite par Rissanen. Cette méthode est également connue en statistique sous le nom du principe de description de longueur minimale (principe MDL). On a ainsi pu obtenir des algorithmes sans paramètre empirique à ajuster contrairement aux techniques classiques de régularisation. C'est un aspect qui nous motive car la présence de tels paramètres à ajuster peut être une limite importante pour de nombreuses applications industrielles. Nous représentons sur la figure phyti.1 les résultats obtenus dans le cas d'images optiques actives et passives. Le principe de la segmentation consiste schématiquement à chercher le contour polygonal qui permettra d'aboutir à une description de l'image à l'aide d'un code de Shannon qui minimise le nombre de bits nécessaire (donc la plus simple du point de vue entropique).



Figure phyti.1: Exemples de segmentations obtenues par technique du contour actif statistique polygonal avec estimation du nombre de nœuds par minimisation de la complexité stochastique (critère MDL) Nous représentons à chaque fois le contour initial et le contour obtenu.

Ce contour polygonal est initialisé en réalisant des segmentations successives au sens du maximum de vraisemblance et pour lesquelles le nombre de nœuds est augmenté progressivement. Le contour optimal est ensuite obtenu en supprimant les nœuds afin de minimiser la complexité stochastique (et donc de minimiser le critère MDL). Nous avons en particulier montré que dans le cadre des modèles statistiques considérés, c'est cette procédure de simplification (minimisation de la complexité à partir d'une description sur-paramétrée) qui était efficace. La procédure habituelle qui consiste à augmenter le nombre de nœuds pour la recherche du minimum de la complexité stochastique, aboutit à des résultats qui ne sont pas satisfaisants. Avec la technique proposée, seule la famille de la loi de probabilité des niveaux de gris doit être spécifiée (Poisson, Gamma, gaussien, etc.). Les paramètres statiques des lois sont alors automatiquement estimés ainsi que le nombre de nœuds du polygone final. On peut noter qu'en ce qui concerne les paramètres statiques des lois, la minimisation de la complexité stochastique s'identifie à l'estimation du maximum de vraisemblance, ce qui permet de bénéficier des propriétés d'optimalité bien connues pour la famille exponentielle. Notons enfin que les temps de segmentation sont inférieurs à la seconde sur des images de 256 x 256 pixels.

Nous avons également appliqué nos travaux sur les algorithmes de contour actif au cas des images SAR. Nous avons pu montrer qu'il est préférable de travailler directement sur l'image plutôt que d'appliquer une détection de contour préalable. En effet, les estimations des détecteurs de bords sont biaisés et conduisent à de plus grandes variances que celles obtenues avec le contour actif statistique. Nous avons ainsi été conduit à généraliser l'algorithme rapide développé initialement pour le modèle de contour actif au cas d'un ensemble de contours actifs connectés afin de traiter le cas général où l'image est constituée d'un patchwork de régions simplement connexes. Un intérêt de cette approche est illustré sur la figure phyti.2 où nous comparons les résultats obtenus sur une image de synthèse (ce qui permet de connaître la solution parfaite du problème) en utilisant une détection de contour ou la grille active statistique.

Les résultats obtenus nous ont incité à étendre cet algorithme à des grilles quelconques afin de traiter le cas où les régions de l'image ne sont pas simplement connexes. C'est un aspect important pour gérer des situations où l'image est constituée d'un patchwork arbitraire de régions. Le principe de l'algorithme généralise celui du contour actif statistique décrit précédemment. Pour cela, on recherche la partition de l'image dont les frontières entre les différentes régions sont polygonales et qui permet de minimiser la complexité stochastique de Rissanen. Ce critère et ce modèle d'image présentent de nouveau la propriété pratique intéressante que l'ensemble des paramètres peut être estimé simplement dans le cadre des densités de probabilité de la famille exponentielle. On peut ainsi aboutir à des techniques de segmentation qui ne contiennent aucun paramètre empirique à ajuster. Plus précisément, à chaque étape de l'algorithme, les paramètres statistiques des lois de probabilité des niveaux de

gris de chaque région sont estimés afin de minimiser la complexité stochastique (ici aussi cette estimation est équivalente à une estimation au sens du maximum de vraisemblance, ce qui permet de conserver les propriétés bien connue dans le cas de la famille exponentielle). Les paramètres tels que le nombre de régions, leur forme (position des nœuds) et leur régularité (nombre de nœuds) correspondent à la complexité de la grille et sont également estimés par minimisation de la complexité stochastique. Un intérêt immédiat de cette approche est qu'elle dispense d'introduire des termes de régularisation, et donc, des paramètres à ajuster.

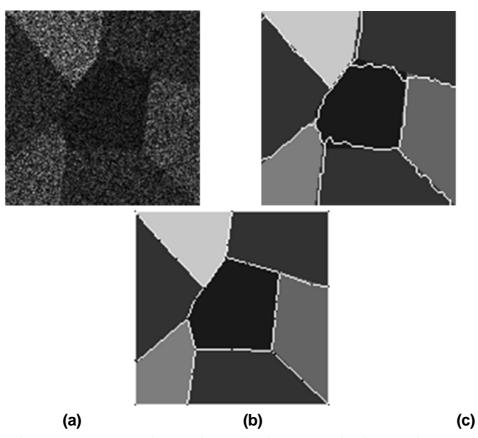


Figure phyti.2 : (a) Image synthétique de speckle (loi Gamma d'ordre 1) . (b) En gris : régions homogènes vraies, en trait blanc : segmentation obtenue à l'issue d'une détection de contour avec un détecteur du rapport de vraisemblance et une fusion à l'aide de la ligne de partage des eaux. (c) Résultat de la segmentation par technique Grille active et une estimation du maximum de vraisemblance.

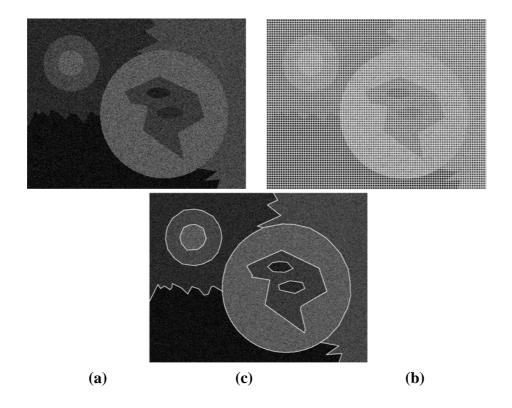


Figure phyti.3 : (a) : Image de synthèse dont les niveaux de gris possèdent des densités de probabilité exponentielles et qui simule une image SAR simple vue. (b) Grille initiale, formée de cellules rectangulaires de 5x5 pixels. (c) Résultat de la segmentation par minimisation de la complexité stochastique.

Nous présentons sur la figure phyti.3 un exemple de résultat obtenu sur une image de synthèse du type SAR qui permet d'illustrer les capacités de l'algorithme et notamment la possibilité de gérer des régions non simplement connexes. Nous représentons sur les figures phyti.4 et phyti.5 deux exemples de résultats obtenus sur des images réelles. Le premier correspond à une image SAR d'une région agricole près de Bourges. Il permet d'illustrer le principe de la technique développée qui consiste à optimiser le critère en alternant des phases de fusion de régions, de déformation de la grille et de simplification de la grille par suppression de nœuds dont chacune est définie par la recherche du minimum du critère de complexité stochastique. Le second exemple correspond à une image SAR d'une région d'Ukraine.

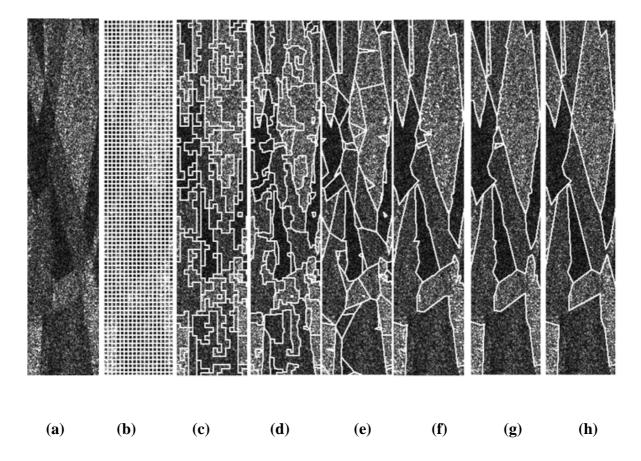


Figure phyti.4: (a): Image SAR d'une zone agricole. (b) Grille initiale, formée de cellules rectangulaires de 5x5 pixels. (c) Résultat après minimisation de la complexité stochastique par fusion de régions. (d) Résultat après minimisation de la complexité stochastique par déformation de la grille. (e) Résultat après minimisation de la complexité stochastique par suppression de nœuds de la grille. (f) Résultat après une nouvelle minimisation de la complexité stochastique par fusion de régions. (g) Résultat après une nouvelle minimisation de la complexité stochastique par déformation de la grille. (h) Résultat après une nouvelle minimisation de la complexité stochastique par suppression de nœuds de la grille. Le temps de calcul pour l'ensemble des opérations est de l'ordre de 3 secondes sur un PC standard quand l'ordre du speckle est connu.

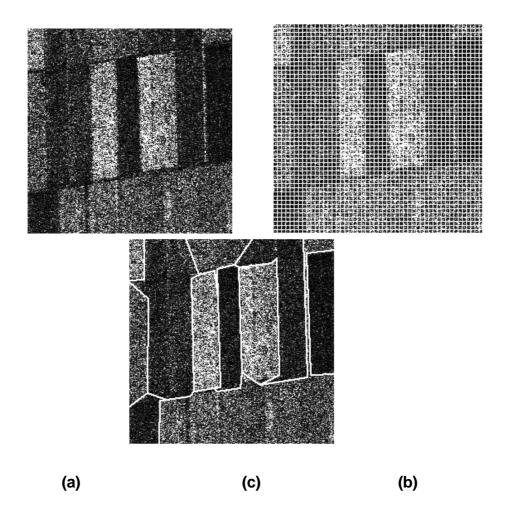


Figure phyti.5 : (a) Image SAR d'un zone agricole. (b) Grille initiale, formée de cellules rectangulaires de 5x5 pixels. (c) Résultat de la segmentation par minimisation de la complexité stochastique. Les temps de calcul sont de l'ordre de 30 secondes sur des images de 256 x 256 pixels quand on estime l'ordre du speckle.

Nous souhaitons développer cette activité essentiellement dans trois directions :

- Etendre les domaines d'applications de la grille active fondée sur la minimisation de la complexité stochastique. On cherchera en particulier à valoriser ces travaux dans le cadre de différents contextes tels que des images perturbées par d'autres type de bruit (Poisson, gaussien) ainsi que le cas des images optroniques (infrarouge Bandes II et III) et multicomposantes (polarimétrique, couleur).
- Développer nos études et notre expertise théorique sur ce thème (lois de probabilité hors de la famille exponentielle, gestion de régions non parfaitement homogènes, analyse plus approfondie des problèmes de théorie des graphes sous-jacents au modèle et développement d'une algorithmie plus rigoureuse). Dans cet esprit, nous avons mis en place une action Math-STIC avec un laboratoire d'informatique fondamentale (équipe spécialisée dans la théorie des graphes et de l'optimisation combinatoire du LIF) et un laboratoire de mathématiques appliquées (équipe de statistique du LATP).

• Amplifier notre collaboration avec la société créée par deux doctorants issus de l'équipe (Ch. Chesnaud et F. Guérault) sur le thème de la segmentation d'objets. Ce sujet, qui fait l'objet d'un financement de thèse par la région (P. Martin), concerne plus précisément le développement d'une méthodologie statistique de validation d'algorithmes de segmentation à l'aide de critères de qualité. Les objectifs recherchés sont de diminuer les temps de développement de nouvelles applications et de faciliter la capitalisation de l'expérience, ce qui constitue un aspect essentiel pour une entreprise.

V.2.2. Thème 2 : Nouvelles techniques optroniques d'imagerie

<u>Participants</u>: F. Goudail (MCF) à 100 %, Ph. Réfrégier (Pr) à 50 %, à partir de septembre 2002 : M. Roche MCF à 50 % et N. Roux Doctorant à 100 %.

Nous avons amplifié nos études sur la caractérisation et le traitement d'images issues de nouveaux systèmes d'imagerie optronique active et polarimétrique. Ces travaux nous ont non seulement conduit à développer des algorithmes spécifiques de détection et de segmentation, mais également à étudier précisément les propriétés physiques des images. En particulier, nous avons analysé en détail certaines propriétés statistiques de la polarisation de la lumière.

Nous avons pu tout d'abord montrer qu'en imagerie active la représentation du degré de polarisation de la lumière n'est pas la plus intéressante en présence de speckle pour les tâches de traitement telles que la segmentation, la détection ou la localisation de cible par exemple. En effet, les propriétés d'invariance statistique démontrent qu'une autre représentation est mieux adaptée (la tangente hyperbolique inverse du degré de polarisation) car elle correspond à la représentation du groupe d'invariance sous la forme d'un simple groupe additif. Avec cette représentation, l'estimation du degré de polarisation par moyenne spatiale est non biaisée alors que le biais peut atteindre 20 % avec la représentation classique (voir figure phyti.6).

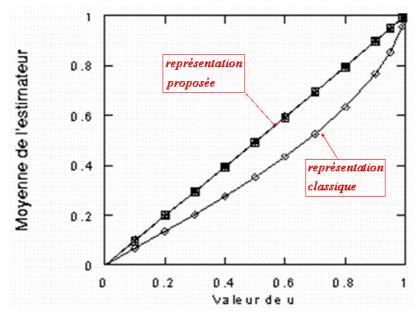


Figure phyti.6 : valeur moyenne de l'estimateur du degré de polarisation par moyenne spatiale en fonction de la valeur vraie. La relation linéaire est caractéristique d'une estimation sans biais.

Cette représentation nous a permis d'aboutir à des algorithmes simples et efficaces (la variance des estimateurs est proche la borne de Cramer Rao à quelques pourcents). Nous représentons à titre d'exemple sur la figure phyti.7 les résultats de la détection de bords d'une image de degré de polarisation avec un détecteur du rapport de vraisemblance généralisé adapté à des fluctuations gaussiennes dans le cas de la représentation classique et de la représentation proposée.

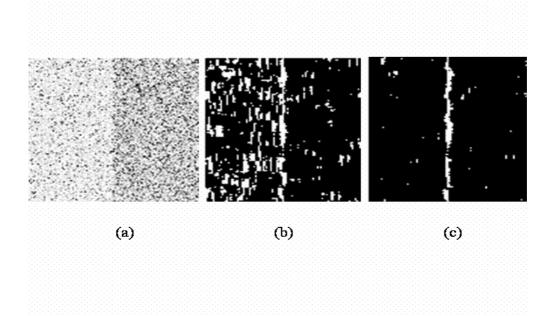


Figure phyti.7: image synthétique de degré de polarisation présentant une transition. (b) détection du bord avec un détecteur du rapport de vraisemblance généralisé adapté à des fluctuations gaussiennes dans le cas de la représentation classique. (c) détection du bord avec un détecteur du rapport de vraisemblance généralisé adapté à des fluctuations gaussiennes dans le cas de la représentation proposée.

Le cas le plus général pour représenter les propriétés de polarisation de la lumière correspond au vecteur de Stokes à quatre dimensions (isomorphe aux matrices de cohérence). Ce formalisme pose de nombreuses questions comme par exemple la définition de la notion de contraste entre deux régions. Ici aussi l'étude du groupe d'invariance des propriétés statistiques nous a permis d'apporter des solutions originales à ce problème. Plus précisément, si on souhaite définir le contraste entre deux régions, chaque situation est caractérisée par quatre paramètres scalaires pour chaque région (les vecteurs de Stokes moyens), soit huit paramètres au total. Pour caractériser un algorithme de traitement (de détection, de localisation, de segmentation, etc.), il serait donc a priori nécessaire de faire varier les valeurs de ces huit paramètres, ce qui constitue une tâche fastidieuse. L'invariance de groupe des lois représentatives du speckle, permet de montrer que l'on peut regrouper ces huit paramètres en deux fonctions scalaires (les paramètres de contraste) qui ne dépendent pas de la tâche à résoudre (détection, localisation, segmentation, etc.) et du critère de qualité considérés tant que celui-ci peu être exprimé comme un risque bayésien.

Nous continuons nos études sur ce sujet car il soulève des questions à la fois importantes sur le plan académique et appliqué. En particulier, ces études devraient permettre de simplifier l'optimisation des systèmes d'imagerie multispectrale et polarimétrique. En effet, dans les situations statistiques originales où le bruit n'est plus simplement additif ou multiplicatif, la notion de rapport signal sur bruit est absente, ce qui complique fortement l'analyse des systèmes. Quand il n'existe pas de groupe d'invariance, ou qu'il n'est pas suffisant pour obtenir un paramètre de contraste scalaire, le problème de la définition du rapport signal sur bruit reste posé. Nous souhaitons donc étendre nos investigations sur l'analyse et le traitement des images optroniques à ces cas difficiles mais importants pour les applications. Nous avons par exemple montré que la distance de Battacharrya est un meilleur critère que le rapport de Fisher (qui est le rapport signal sur bruit classique puisqu'il correspond au rapport de la différence des moyennes au carré par la somme des variances) dans le cas des images acquises à faible flux et en présence de speckle et dans le cas des images de Stockes. Nous représentons sur la figure phyti.8, l'aire sous la courbe de la probabilité de détection en fonction de la probabilité de fausse alarme pour différentes configurations en fonction du rapport de Fisher et de la distance de Battacharyya ce qui démontre clairement la supériorité de cette dernière.

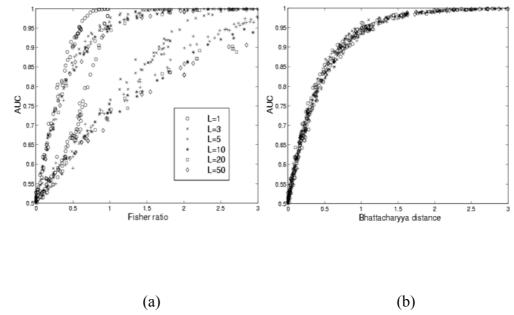


Figure phyti.8: (a): représentation de l'AUC (l'aire sous la courbe de la probabilité de détection en fonction de la probabilité de fausse alarme) pour différentes configurations en fonction du rapport de Fisher (a) et de la distance de Battacharyya (b) dans le cas d'images de speckle acquises à faible flux de photons. On voit qu'il y a une relation quasi-bijective entre l'AUC et la distance de Battacharyya ce qui n'est pas le cas avec le rapport de Fisher. Ce résultat démontre que, contrairement à la distance de Battacharyya, le rapport de Fisher ne constitue pas un bon critère de contraste (différentes performances peuvent être obtenues pour une même valeur du rapport de Fisher).

Enfin nous souhaitons étendre nos études aux cas des images actives et/ou hyperspectrales. Il s'agit certes de problèmes difficiles, ne serait-ce que par les quantités importantes de données à manipuler et la difficulté de modéliser simplement les effets dus à la turbulence atmosphérique. Cependant, il existe actuellement un regain d'intérêt en ce qui concerne les applications et nous pensons qu'il s'agit d'un domaine où les techniques que nous développons peuvent permettre d'aboutir à des progrès intéressants.

Les collaborations industrielles et universitaires sur ce thème ont été poursuivies et amplifiées (contrat DGA, sous-traitance d'un programme RNRT, Contrat jeune équipe du GDR ISIS avec l'I3D de Lille). Dans le cadre de l'Action Spécifique « Imagerie et Physique » du STIC/CNRS, nous avons établi des collaborations avec des laboratoires de Mulhouse, Lille et Strasbourg, ce qui a permis d'aboutir à la création d'une Equipe Projet Multi Laboratoire (EPML). Nous cherchons également à étendre ces résultats aux cas des images multi et hyperspectrales.

V.2.3. Conclusion sur les perspectives

Nous continuerons à développer nos thèmes de recherches en relation directe avec des partenaires industriels ou des grands organismes. La motivation scientifique essentielle est d'assurer un ancrage solide au sein des STIC et des sciences pour l'ingénieur en favorisant le réalisme des études, et en particulier, de nos études amont. Enfin, un effort particulier sera consacré au développement de nouvelles collaborations académiques internationales afin d'accroître le champ de nos travaux sur les aspects théoriques.

Sur le plan strictement scientifique, pendant ces 4 dernières années, nous avons recentré nos études dans deux directions : la segmentation d'images et le traitement des images optroniques actives. Nous avons pour cela développé des méthodes utilisant des concepts qui étaient nouveaux pour notre équipe et qui reposent sur l'utilisation de techniques avancées de statistiques (groupe d'invariance de lois de probabilité, distances entre lois et bornes de performances), de méthodes issues de la théorie de l'information (complexité stochastique de Rissanen et estimation de l'ordre de modèle) et qui nécessitent une plus grande maîtrise de la nature discrète des images que celle dont nous disposions jusqu'alors (algorithme rapide pour des patchworks de régions non simplement connexes). Nous comptons accroître notre expertise dans ces domaines afin de développer de nouvelles techniques moins supervisées et encore plus robustes. C'est dans cet esprit que nous développons nos collaborations académiques et internationales.

V.5.3 Les activités internationales.

Contrat européen Eurofinder déposé (Détail confidentiel)

Collaboration avec l'université de Valence en Espagne (Pr. C. Ferreira) :

Nous avons établi une collaboration avec le groupe optique de l'université de Valence dont le thème concerne les algorithmes de corrélation en traitement d'images. Trois aspects ont été abordés : les bruits substitutifs, les corrélateurs 3D (2 coordonnées spatiales et la longueur d'onde optique) et les algorithmes de détection / localisation en présence de cibles inhomogènes. Cette collaboration s'est traduite par :

- les séjours d'un doctorant (2 mois) et d'un professeur (3 mois) dans notre équipe,
- la publication de 4 articles dans des revues internationales,
- la tenue d'un workshop à Valence.

Collaboration avec l'université du Connecticutt (Pr B. Javidi) :

Cette collaboration déjà ancienne de l'équipe s'est réactivée sur un nouveau thème : le traitement des images holographiques numériques. Cette collaboration s'est traduite par :

- le séjour d'un MCF de notre équipe (N. Bertaux) à l'université du Connecticut pendant 4 mois,
- la publication d'une conférence internationale et les rédactions d'articles dans des revues internationales sont en cours.

Organisation de Conférences depuis 01 - 01 – 1999 :

- CoPrésidence du comité de programme (Ph. Réfrégier) avec D.V. Plant (Canada) de la conférence Optical Computing 2000 à Québec en sept. 2000 (OSA,IEEE, ICO) (de l'ordre de 200 présentations).
- **Organisation locale** de la conférence « Physics in Signal and Image Processing 2001 » (Marseille janvier 2001 organisateur : Ph. Réfrégier).
- **Initiateur, organisateur et coprésident** (Ph. Réfrégier) avec B. Javidi des l'Euro-American Workshops on Optoelectronic Information Processing, soutenus par la SPIE sous forme de *Critical Review*, Colmar, juin 1999, Valencia 28-31 May 2001.
- **Présidence** (Ph. Réfrégier) du comité scientifique de la conférence « Physics in Signal and Image Processing 2003 » (Grenoble 2003).

Activités auprès des Sociétés savantes internationales et des Revues Internationales :

- **Topical Editor** de la revue internationale « Applied Optics Information Processing » (Ph. Réfrégier depuis décembre 97) pour les domaines « signaux optiques et traitement d'images ».
- Fellow (Ph. Réfrégier) de l'OSA (Optical Society of America) en février 2000.
- **Rapporteurs** de revues internationales (IEEE : IEEE PAMI, IEEE Image Processing, OSA : Optics Letters, J.O.S.A. A , Applied Optics, SPIE : Optical Engineering, Autres : Journal of European Optical Society A, Optics Comm., Journal of Optics, traitement du signal, etc.).

V.5.6 La valorisation et le partenariat industriel.

<u>Partenariat industriel</u>: Nous ne mentionnons dans la suite que les relations qui se concrétisent par des contrats d'études ou des présentations communes auprès d'organisme.

Deux anciens doctorants de l'équipe (Christophe Chesnaud et Frédéric Guérault) ont créé une entreprise de traitement d'images (Simag développement). Nous mettons en place une collaboration importante autour d'une thèse qui aura lieu majoritairement dans l'équipe Phyti, et dont le thème concerne la segmentation d'images (voir description du thème 1).

Nous avons poursuivi notre collaboration dans le cadre de la reconnaissance de cible, de l'imagerie optronique active, de la caractérisation de capteurs d'images et sur la polarisation optique.

<u>Participation au GDR-PRC ISIS</u>: (actions depuis janvier 2000)

- Mise en place et animation au sein du GT multicomposantes d'une journée thématique sur la Polarisation (F. Goudail).
- Participations ponctuelles à l'action industrielle du GDR avec le groupe Elf (Projet 11.3 Radar à ouverture synthétique et GT 1 et 3).
- Participation à différentes journées d'études.
- Participation à l'Action jeune chercheur du GDR (Responsable : V. Devlaminck de l'I3D de Lille) sur le traitement des images polarimétriques passives et actives en lumière incohérente.

Autres actions au sein de la communauté française :

- **Présidence entrante** (Ph. Réfrégier) de la Société Française d'Optique.
- Membre nommé du CNU en section 61 (Ph. Réfrégier).
- **Membre** de commission d'évaluation auprès du Ministère (Ph. Réfrégier).
- **Co-responsabilité** de l'Action Spécifique « Imagerie et Physique » du STIC/CNRS et du Ministère de la Recherche qui implique de l'ordre de 20 laboratoires) (Ph. Réfrégier).

V.3. <u>Doctorants PHYTI</u>

V.3.1. Doctorants présents au 01 Septembre 2002

Nom, Prénom	Date de Naissance	Date d'arrivée dans l'unité	Type de bourse	Direction de thèse	DEA d'origine	date de soutenance
MARTIN Pascal	16/09/1977	2002	Région Ent.	Ph. REFREGIER	Signal, Image, Parole, Télécomm.	2005
ROUX Nicolas	18/05/1978	2002	DGA	Ph. REFREGIER / F. GOUDAIL	Optique, Image et Signal	2005
GALLAND Frédéric	29/03/1977	2001	M.E.N.R.T	Ph. REFREGIER	Optique, Image et Signal	2004

V.3.2. Thèses soutenues (99-02)

Nom, Prénom	Type de bourse	Direction de thèse	DEA d'origine	date de soutenance	Devenir professionnel
PAGE Vincent	MENESRIP	Ph. REFREGIER / F. GOUDAIL	Optique, Image, Signal	01/10/2001	Ens. Supérieur
RUCH Olivier	C.I.F.R.E.	Ph. REFREGIER	Optique, Image, Signal	01/10/2001	Ent.
CHESNAUD Christophe	MENESRIP	Ph. REFREGIER	Optique, Image, Signal	01/02/2000	Ent.
CABANILLA S Stéphanie	MENESRIP	Ph. REFREGIER/ M. GUILLAUME	Optique, Image, Signal	01/11/2000	Ent.
GERMAIN Olivier	CNES/PAC A	Ph. REFREGIER	Optique, Image, Signal	01/01/2001	Ent

V.4. PHYTI: Production scientifique

20 RICL, 12 Proc., 5CI, 1 brevet et 4 chapitres d'ouvrage

V.4.1. Publications dans revues internationales avec comité de lecture

- Pagé V., Garcia J., Réfrégier Ph., "Detection of objects composed of several regions using a region configuration estimation method", JOSA A., Vol.19, No.2, pp.306-314, 2002.
- Réfrégier Ph., Goudail F.,, "Invariant polarimetric contrast parameters of coherent light.", Journal of the Optical Society of America A., Vol.19, No.6, pp.1223-1233, 2002.
- Esteve-Taboada J., Réfrégier Ph., García J., Ferreira C., "Target localization in the three-dimensional space by wavelength multiplexing.", Optics Com., Vol.202, No., pp.69-79, 2002.
- Goudail F., Réfrégier Ph., "Target segmentation in active polarimetric images using statistical active countour", Applied Optics-IP., Vol.41, No.5, pp.874-883, 2002.
- Garcia J., Pagé O., Réfrégier Ph., "Detection of multiregions objects embedded in non-overlapping noise.", Optics Letters., Vol.26, No.18, pp.1394-1396, 2001.
- Germain O., Réfrégier Ph., "Edge location in SAR images: performance of the likehood ratio filter and accuracy improvement with an active contour apProch.", IEEE Trans. on Image Processing., Vol.10, No.1, pp.72-78, 2001.
- Garcia-Martinez P., Refregier Ph., Arsenault H, Ferreira C., "Maximum likelihood for target location in the presence of substitutive noise.", Applied Optics-IP., Vol.40, No.23, pp.3855-3860, 2001.
- Ruch O., Réfrégier Ph., "Minimal complexity segmentation with a polygonal snake adapted to different optical noise models.", Optics Letters., Vol.26, No.13, pp.977-979, 2001.

- Hueber E, Bigué L., Réfrégier Ph., Ambs P., "Optical snake-based segmentation processor using a shadow casting incoherent correlator.", Optics Letters., Vol.26, No.23, pp.1852-1854, 2001.
- Germain O., Réfrégier Ph., "Statistical active grid for segmentation refinement.", Pattern Recognition Letters., Vol.22, No., pp.1125 –1132, 2001.
- Goudail F., Réfrégier Ph., "Statistical algorithms for target detection in coherent active polarimetric images.", JOSA A., Vol.18, No.12, pp.3049-3060, 2001.
- Goudail F., Réfrégier Ph., "Statistical techniques for target detection in polarisation diversity images.", Optics Letters., Vol.26, No.9, pp.644-646, 2001.
- Goudail F., Ruch O., Réfrégier Ph., "Deconvolution of several versions of a scene perturbed by different defocuses blurs: influence of the kernel diameters on the resoration quality and on the robustness to kernel estimation.", Applied Optics., Vol.39, No., pp.6602-6612, 2000.
- Germain O., Réfrégier Ph., "On the bias of the Likelihood Ratio edge detector for SAR images.", IEEE Trans. on Geoscience and Remote Sensing., Vol.38, No.3, pp.1455 -1458, 2000.
- Pagé V., Goudail F., "Phase encoding the input scene of an optical correlator in the presence of nonoverlapping noise.", Optics Communication., Vol.175, No.(1-3), pp.57-66, 2000.
- Réfrégier Ph., "Bayesian theory for target location in noise with unknown spectral density.", Journal of Optical Society of America A, Vol.16, No.2, pp.276-283, 1999.
- Sjöberg H., Goudail F., Réfrégier Ph., "Comparison of the maximum likelihood ratio test algorithm and linear filters for target location in binary images.", Optics Communication., Vol.163, No., pp.252-258, 1999.
- Pagé V., Goudail F., Réfrégier Ph., "Improved robustness of target location in nonhomogeneous backgrounds by use of the maximum-likelihood ratio test location algorithm.", Optics Letters., Vol.24, No.20, pp.1383-1385, 1999.

- Germain O., Réfrégier Ph., "Snake-based method for the segmentation of objects in multichannel images degraded by speckle.", Optics Letters., Vol.24, No.12, pp.814-816, 1999.
- 1 Chesnaud C., Réfrégier Ph., Boulet V., "Statistical region snake based segmentation adapted to different physical noise models.", IEEE Transactions on Pattern Analysis and Machine Intelligence., Vol.21, No.11, pp.1145-1157, 1999.

V.4.2. Communications avec actes

- Germain O., Réfrégier Ph., "Statistical multiregion snake-based segmentation.", Mathematical Modeling, Estimation and Imaging, San Diego, USA., Vol., No., pp.4121, 2000.
- 11 Cabanillas S., Guillaume M., Réfrégier Ph., "Reconstruction of astronomical images from low-photon image sequence : study for Gaussian displacements.", Conférence IWISPA 2000, pp 35-40, Pula, Croatia, 15-16 juin, 2000.
- Goudail F, Réfrégier Ph., "Target detection and segmentation in coherent active polarimetric images.", Conférence ICIP., p 632-635, 2001.
- Goudail F., Pagé V., Réfrégier Ph., "Improving target detection with polarization diversity images.", Second Symposium on Physics in Signal and Image Processing., P 340-345, 2001.
- 8 Goudail F., Réfrégier Ph, "Improving target detection in active polarimetric images.", Proc. SPIE Optical Pattern Recognition XII., Vol.4387, No., pp.140-151, 2001.
- Réfrégier Ph., Goudail F., "Définition d'un contraste dans les images polarimétriques actives en lumière cohérente.", Conférence OPTIX 2001, 26-28 Novembre 2001., Vol., No., pp., 2001.
- Ruch O., Réfrégier Ph., "Comparison of Hausdorff distances performances in dissimilarity measurements for silhouette discrimination.", Proc. SPIE Automatic Target Recognition XI., Vol.4379, No., pp.454-465, 2001.

- Ruch O., Réfrégier Ph., "Characterization of the recognition and the identification capabilities of the statistical snake at low resolution and high noise levels in speckled images.", Proc. SPIE Optical Pattern Recognition XII., Vol.4387, No., pp.152-163, 2001.
- Chesnaud C., Réfrégier Ph., "Fast algorithm for region snake based segmentation adapted to physical noise models and application to objet tracking.", SPIE Proceedings, p 77-85, Optical Science, Engineering, and Instrumentation44th Annual Meeting and Exhibition, Denver, (USA), July 1999.
- Goudail F., Ruch O., Réfrégier Ph., "Deconvolution of an image perturbed by several defocus blurs.", Proc. SPIE 3Applications of Digital Image Processing XXII3, Andrew G. Tescher, Editor., Vol.3808, No., pp.457-468, 1999.
- Goudail F., Réfrégier Ph., "Analysis of the robustness of a double-phase encoding system to a perturbation of the coded image.", Proc. SPIE « Algorithms, Devices, and Systems for Optical Information Processing III », Bahram Javidi, Demetri Psaltis, Editors, Vol.3804, No., pp.160-171, 1999.
- Galland F., Bertaux N., Réfrégier Ph, "Merge, Move and Remove MDL based segmentation for synthetic aperture radar images.", Advanced Concepts for Intelligent Vision Systems. September 9-11, 2002, Ghent Univ, Belgium., 2002.

V.4.3. Conférences invitées dans des congrès internationaux

- Goudail F., Réfrégier Ph., "Estimation and detection in active polarimetric images", Workshop of the EOS Technical Group on Information Optics (IOG), Septembre 2002, Mannheim., 2002.
- Réfrégier Ph., Goudail F., "Statistical processing of polarization diversity images.", Euro-American Workshop on Optoelectronic Information Processing, (Valencia), 28-31 May 2001. SPIE Press, N ISBN 0-8194-4123-16, 2001.
- Réfrégier Ph., "Filtering techniques for optical pattern recognition.", ICO XVIII, 18th Congress of the International Commission for Optics: Optics for the next Millennium", (San Francisco, California, USA), 2-6 August 1999., PHYTI.
- Chesnaud C, Réfrégier Ph., "Snake region based segmentation for different physical noise models and fast algorithm implementation.", PSIP'99 "Physics in Signal and Image Processing", First International Symposium, Paris, France, January 18-19, 1999...

Réfrégier Ph., Goudail F., Chesnaud C., "Statistically independent region models applied to correlation and segmentation techniques.", Euro-American Workshop on Optoelectronic Information Processing, Colmar., 1999, SPIE Press, - N ISBN 0-8194-3457-4.

V.4.4. Brevets

Brev 2002 P. Réfrégier.

«Algorithme de contrôle sans butée de la Thales, Alcatel, ENST Br, INRIA. polarisation de la lumière dans le cadre des applications télécommunications à très haut débit».(proposé)

V.4.5. Chapitres de livre

4	Bookc h	1999	Ph. Réfrégier, F.Goudail, C. Chesnaud.	Statistical independent region models applied to correlation and segmentation techniques".	Euro-American Workshop on Optoelectronic Information Processing, (Colmar), May 1999, SPIE Press, Vol. CR174, p.193 224, N°ISBN 0-8194-3324-1. Editors : Ph. Réfrégier, B. Javidi.
3	Bookc h	2002	O. Germain and Ph. Réfrégier	Edge detection and location in SAR images: contribution of statistical deformable models	Image recognition and classification: Algorithms, Systems and Applications Marcel Dekker, Inc., New York, p. 101-150

2	Bookc h	2001	P. Réfrégier and F. Goudail	Statistical processing of polarization diversity images	Optics for information systems, SPIE press, vol. CR74, p. 262-288
1	Bookc h	2002	Ph. Réfrégier, F. Goudail, P. Chavel	Polarimetric Imaging	A paraître dans le livre accompagnant les actes de la conference ICO Florence 2002

V.5. PHYTI: Bilan financier

V.5.1. Contrats de recherche référencés R3

ANNEE	Contrat	Compte N°	Equipe	Resp.	Montant HT en EUROS	TOTAL par année	Solde au 17.10.02
DGA		702 R3	PHYTI	Réfrégier	23 400.00		1 160.00
1999	THOMSON CSF	707 R3	PHYTI	Réfrégier	22 800.00		8 326.71
	DGA	710 R3	PHYTI	Réfrégier	30 900.00		6 520.59
2000	DGA	715 R3	PHYTI	Réfrégier	50 951.51	128 051.51	43 182.83
	T	otal PHY	128 051.51		43 182.83		
	MOYE	NNE SUR	32 012.88				

V.5.2. Contrats de recherche référencés C

ANNEE	Contrat	Fact n°	Equipe	Chercheur	Date	Montant HT en EUROS	TOTAL par année	Solde au 17.10.02
2002	THALES	542 C	PHYTI	Réfrégier		11 433.00		
	Copoldyn	542 C	PHYTI	Réfrégier		15 200.00	26 633.00	
		TOTAL 19	11 433.00		0.00			
		Moyenne s	2 858.25					

V.5.3. Opérations spécifiques CNRS

ANNEE	Origine	CDP	Equipe	Chercheur	Montant HT en EUROS	TOTAL par année
2001	CNRS Moyens Spécifiques		PHYTI	Réfrégier	19 361.03	
2001	CNRS récurrent	000 153	PHYTI	Réfrégier	1 524.49	20 885.52
2002	CNRS Moyens Spécifiques	0MS 153 PHYTI Bertaux			3 150.00	3 150.00
		24 035.52	_			
	Mo	6 008.88				

EQUIPE COM: EFFECTIFS

Nom, Prénom	Date de naissance	Corps, Grade	Section CNU ou CNRS	HDR	Date d'arrivée	Etablissement d'affectation	% effectif
BITTEBIERRE Jean	déc-57	MC	63		dans l'unité oct. 89	E.N.S.P.M.	1.00
ESCOUBAS Ludovic	mars-72	MC	63		sept. 98	E.N.S.P.M.	1.00
FLORY François	févr-50	PR2	63	X	jan. 85	E.N.S.P.M.	1.00
SIMON Jean-Jacques	mars-68	MC	63		sept-02	UIII (I.U.T.)	1.00
LENNE Pierre-François	1/6/71	CR2	section 8		oct. 00	C.N.R.S.	1.00
RIGNEAULT Hervé	1/2/68	CR1	section 8	X	oct. 94	C.N.R.S.	1.00
LAZARIDES Basile	20/11/40	IE1HC				C.N.R.S.	1.00
GIOVANNINI Hugues	juil-63	PR2	63	X	oct. 91	UIII (I.U.T.)	0.50
SPINELLI Jean-Pierre	19/2/60	T			2002	E.N.S.P.M/Contractuel	0.33

Soit, en effectifs temps plein (hors administration): 7,83

Dont 2 chercheurs CNRS,

Et 2,5 HDR

VI - EQUIPE COM: BILAN SCIENTIFIQUE

VI.1. Objectifs de l'équipe

L'équipe Composants Optiques Microstructurés de l'Institut Fresnel s'est donnée pour objectif de développer de nouveaux outils et composants optiques qui trouvent leurs applications dans les domaines en pleine expansion de la biologie et des communications optiques. L'approche suivie est à finalité expérimentale mais toujours soutenue par des modélisations appropriées.

L'équipe, forte de 7 chercheurs et enseignants chercheurs et plusieurs étudiants, dispose de 6 salles d'expérimentation optique équipées et d'une salle regroupant des machines de micro-fabrication (lithographie et gravure). Ces moyens sont mis à la disposition des chercheurs de l'équipe qui réalisent des études et mettent au point des dispositifs de micro-optique apportant des solutions originales dans les domaines de la biophotonique et des composants micro-optiques

VI.2. Axe 1: Biophotonique

VI.2.1. Le contexte

La compréhension du vivant requiert depuis des siècles des développements scientifiques et techniques considérables. Ainsi, la détermination de la structure des protéines n'aurait été possible sans la découverte des rayons X et leur mise en œuvre dans des instruments devenus aujourd'hui extrêmement performants. Les défis actuels de la biologie exigent tout autant l'élaboration de concepts que de nouveaux outils d'exploration. En particulier, sonder l'organisation et l'activité des cellules vivantes ou détecter des associations moléculaires dans des micro-capillaires pour les test biologiques n'est envisageable sans le recours aux derniers développements de l'optique et de la photonique. Dans ce contexte, notre équipe vise à rassembler physiciens et biologistes pour élaborer une instrumentation optique ultra-sensible capable de résoudre en temps réel et avec la meilleure définition spatiale, la dynamique de structures supramoléculaires au sein du vivant. Les efforts d'application sont essentiellement focalisés sur :

- l'étude de l'organisation et la dynamique des membranes cellulaires
- la détection de molécules luminescentes se propageant dans des micro capillaires.

VI.2.2. Une équipe de recherche pluridisciplinaire

L'équipe rassemble des chercheurs permanents et non-permanents issus de deux laboratoires ainsi que des doctorants et post-doctorants. Les deux Laboratoires impliqués sont l'Institut Fresnel (UMR CNRS 6133) et le Centre d'Immunologie de Marseille Luminy (UMR CNRS 6102). Afin de labelliser notre action nous avons fait récemment (mars 2002) une demande de création d'équipe-projet auprès des directions scientifiques STIC et SDV.

Actuellement (01/09/02), les acteurs du projet sont les suivants :

Institut Fresnel	Centre d'Immunologie de Marseille Luminy					
Che	Chercheurs					
 Pierre-François Lenne, CR2 CNRS, (Section 08) Hervé Rigneault, CR1 CNRS, (Section 08) Hugues Giovannini, PR III 	- Didier Marguet, CR1 CNRS, SDV (Section 21)					
	ITA					
	- Mathieu Fallet, AI CNRS, SDV (30%)					
Doc	torants					
Emilien Etienne (2001-2003)	- Laure Wawrezinieck (2002-2005)					
Nicolas Sandeau (2002-2005)	- Post Doc en cours de recrutement (2002-					
	2004)					

Par ailleurs, le projet doit bénéficier chaque année du travail d'un ou deux stagiaires issus des DEA régionaux et nationaux.

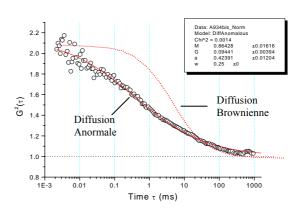
VI.2.3. L'outil expérimental développé : La Microscopie de Corrélation de fluorescence

Les chercheurs de l'équipe étudient les processus biologiques en utilisant des molécules fluorescentes comme reporters. Pour cela, nous développons des instruments optiques capables de détecter des molécules fluorescentes en très petite quantité et voyageant dans un volume de l'ordre de $10^{-15}l$ (=1µm³). Ce volume est situé au foyer d'un objectif de microscope de grande ouverture numérique et peut être déplacé pour se localiser sur une zone bien particulière de l'objet biologique a étudier (sur la membrane d'une cellule animale par exemple). Ainsi, notre groupe pluridisciplinaire a développé en 2002 un appareillage optique complexe, construit autour d'un microscope inversé commercial, mettant en œuvre la technique de spectroscopie de correlation de fluorescence (FCS) pour analyser la diffusion de lipides et de protéines marquées dans les cellules.

VI.2.3.1. La technique FCS

Depuis une vingtaine d'années, il est possible de détecter des molécules individuelles se déplaçant sur la membrane biologique de cellules vivantes¹. Pour cela, la technique FCS

_


¹ E. L. Elson, J. Schlessinger, D. E. Koppel, D. Axelrod, W. W. Webb, Prog. Clin. Biol. Res. **9**, 137 (1976)

(Fluorescent Correlation Spectroscopy)², s'appuie sur la résolution spatiale micronique qu'il est possible d'obtenir avec un montage de microscopie confocale et sur l'analyse temporelle des fluctuations de la luminescence émise par des fluorophores qui se déplacent dans un volume de collection de quelques femtolitres. Il est ainsi possible de connaître le temps de séjour moyen (temps de diffusion) des molécules étudiées dans le volume de collection en étudiant la fonction d'autocorrélation $g^{(2)}(\tau) = \frac{\langle I(t)I(t+\tau)\rangle}{\langle I(t)\rangle^2}$ du signal de fluorescence collecté

I(t). Cette fonction d'autocorrélation fournit des informations sur la dynamique des interactions moléculaires à une échelle spatiale définie par le volume de collection confocal situé au foyer de l'objectif de microscope. Aux temps courts, cette technique permet d'avoir accès aux paramètres photophysiques du fluorophore étudié (temps de vie, dynamique de l'état triplet, conformations,...), aux temps longs la fonction d'autocorrélation renseigne sur la statistique de diffusion et sur le temps de séjour moyen des particules étudiées dans le volume confocal.

La figure 1 montre une fonction d'autocorrélation g⁽²⁾ que nous avons obtenue (aux temps longs) avec un volume confocal standard (1 µm³) pour des protéines membranaires ABC1 marquées GFP³. On observe un temps de diffusion moyen dans le volume confocal de 1ms caractéristique d'une diffusion membranaire. Par ailleurs la diffusion n'est pas de type aléatoire Brownienne ce qui indique une diffusion confinée et/ou perturbée par des obstacles. Des informations importantes comme les dimensions de la zone de confinement peuvent être déduites de la forme de cette fonction d'autocorrélation.

Figure 1 : Exemple de fonction de corrélation g⁽²⁾ obtenue par FCS pour une protéine marquée GFP se déplaçant sur la membrane cellulaire. Ajustement par des modèles de diffusion Brownienne et anormale.

² E.L. Elson, D. Magde, 'Fluorescence correlation spectroscopy', Biopolymers **13**, 1 (1974) M. Ehrenberg, R. Rigler, 'Rotational Brownian motion and fluorescence intensity fluctuation', Chem. Phys. **4**, 390 (1974)

³ Chambenoit, O, Hamon, Y, Marguet, D, Rigneault, H, Rosseneu, M, Chimini, G (2001) J Biol Chem 276, 9955-9960.

VI.2.3.2. Des structures photoniques pour 'modeler' la luminescence

Afin d'augmenter le rapport signal à bruit et/ou de créer de nouveaux type d'analyse du mouvement de molécules biologiques luminescentes, nous utilisons des structures optiques résonantes, mettant en œuvre des réseaux de diffraction⁴ ou des miroirs plans⁵ pour exalter la luminescence des traceurs en solution ou en milieu cellulaire. Plus précisément, les structures optiques sont placées dans un microscope confocal qui, couplé à un système de détection utilisant le comptage de photons et des corrélateurs temporels, permet de détecter les traceurs fluorescents uniques et d'étudier leur mouvement (technique FCS). Nous étudions à l'aide de ces outils la diffusion de protéines et de lipides dans les membranes cellulaires ainsi que le déplacement dans des micro-capillaires utilisés pour les tests biologiques intégrés.

Nous développons également de nouveaux outils de microscopie qui doivent permettre d'accroître la résolution optique traditionnelle. Ces techniques mettent en œuvre l'interférométrie et l'optique non linéaire.

VI.2.4. Les points forts de notre recherche

VI.2.4.1. Développement d'une plate forme expérimentale de biophotonique combinant microscopie confocale et analyse de la diffusion par spectroscopie de corrélation de fluctuation (Fluorescent Correlation Spectroscopy - FCS).

Ce système a été mise en place en utilisant les outils optoélectroniques les plus récents (corrélateurs, lasers, microscopes, détecteurs...) et permet une étude très localisée de la diffusion de marqueurs fluorescents au sein d'un objet biologique de dimensions micrométriques (cellules, bactéries, microcapillaires).

H. Rigneault, S. Monneret, "Modal analysis of spontaneous emission in a planar microcavity," Physical Review A, 54, 2356-2368 (1996)

.

⁴ H. Rigneault, F. Lemarchand, A. Sentenac, H. Giovannini, 'Extraction of light sources located inside waveguide grating structures', Optics Letters **24** (3), 148-150 (1999)

La figure 2 présente le système FCS construit à l'Institut Fresnel qui permet aux chercheurs physiciens et biologistes d'analyser les temps de diffusion de protéines et lipides se déplaçant dans les membranes biologiques. La figure 3 présente le laboratoire de biologie cellulaire également mis en place à l'Institut Fresnel à proximité immédiate du montage FCS de la figure 2.

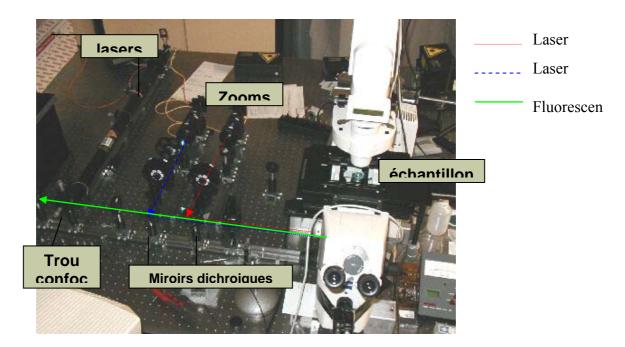


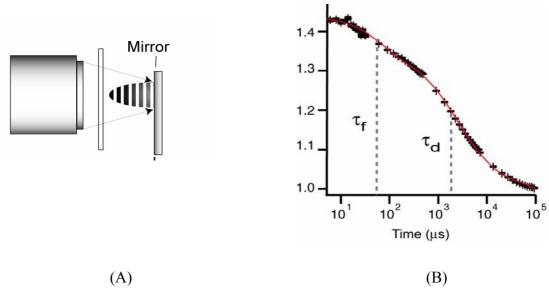
Figure 2 : Vue du montage optique de l'instrument FCS développé

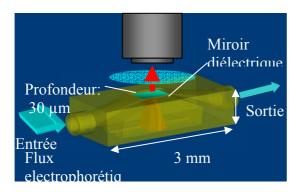
Figure 3 : Vue du laboratoire de biologie cellulaire mis en place à l'Institut Fresnel.

Ces outils expérimentaux sont utilisés pour travailler sur les point suivants :

VI.2.4.2. Démonstration de l'intérêt d'une structure photonique de type miroir pour améliorer la sensibilité et la précision des mesures de FCS.

Nous avons étudié en détail les effets sur les mesures FCS de l'incorporation d'un miroir au foyer de l'objectif de microscope (figure 4). Nous avons pu constater une amélioration d'un facteur supérieur à deux du taux de comptage par molécule ainsi que l'apparition d'un temps de corrélation lié à la présence de franges d'interférences dans le volume de détection confocal. Ce dernier point permet d'avoir accès à une mesure absolue des coefficients de diffusion d'objets biologiques nanométriques (protéines, lipides...) se déplaçant dans le volume confocal. Une action de valorisation doit permettre à terme un transfert de cette découverte vers le milieu industriel. Cette invention a donné lieu à un brevet CNRS.




Figure 4 : Lorsque qu'un miroir est placé au foyer de l'objectif de microscope le volume de collection est 'zébré' de franges d'interférences (fig A). La fonction d'autocorrélation $g^{(2)}$ construite à partir du signal de luminescence de fluorophores diffusants librement dans le volume fait apparaître deux temps caractéristiques (fig.B). Un premier temps t_d habituellement rencontré en FCS qui traduit le temps de résidence moyen dans le volume confocal et un deuxième temps t_f lié à la diffusion de franges à franges. Ce dernier temps est relié de façon univoque au coefficient de diffusion. Par ailleurs le taux de comptage par molécule est exalté d'un facteur supérieur à deux.

VI.2.4.3. <u>Analyse des profils de vitesse par FCS pour des molécules luminescentes se déplaçant dans des microcapillaires.</u>

La technique FCS a été utilisée pour réaliser une cartographie de la vitesse d'écoulement dans des microcapillaires de dimensions micromètriques. Les écoulements sont réalisés par flux hydrodynamique (gravité) ou électrophorétique (différence de potentiel). Nous avons pu montrer que des effets thermiques pouvaient venir modifier les profils de vitesse dans des microcapillaires de sections carrés et circulaires pour un écoulement électrophorétique.

Par ailleurs nous avons réalisé des structures microfluidiques prototypes par microstéréolithographie en conjuguant les savoir-faire de l'Institut Fresnel et du DCPR de Nancy (collaboration Serge Monneret) (Figure 5). Ce type de 'biochip' permet à un fluide de

s'écouler dans une chambre d'analyse de taille micrométrique dont l'une des paroi est recouverte d'un miroir diélectrique permettant d'exalter la luminescence des fluorophores solubilisés en direction de l'objectif de collection.

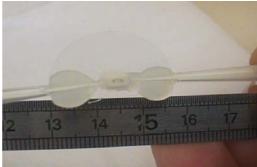


Figure 5 : Microsystème fluidique réalisé par micro-stéréolithographie. Les fluorophores s'écoulent de l'entrée vers la sortie par flux hydrodynamique ou électrophorétique. Arrivés dans la chambre de détection, le signal de fluorescence est analysé par FCS en tirant partie de l'effet d'exaltation du miroir diélectrique.

Cette thématique 'Microfluidique', en relation étroite avec les tests biologiques industriels est amenée a se développer autour de la centrale de nanofabrication développée par l'équipe (voir Axe 2 – Micro-Nano Optique).

VI.2.4.4. Etude de la luminescence de nanocristaux individuels.

Les nouvelles sondes biologiques luminescentes que sont les nanocristaux de CdSe semiconducteurs suscitent un intérêt grandissant pour remplacer les fluorophores organiques traditionnels. Notre équipe s'est lancée récemment dans l'étude systématique de ces nano-objets en relation étroite avec le CEA DRFMC de Grenoble qui maîtrise la synthèse de ces luminophores inorganiques. Notre technique FCS permet d'avoir accès au coefficient de diffusion de ces objets donc à leur taille ainsi qu'aux fluctuations de luminescences propres des nanocristaux. Nous avons pu détecter la luminescence d'un nanocristal individuel et vérifier le dégroupement de l'émission photonique qui signe la nature quantique 'à un photon' de la lumière émise.

En étroite collaboration avec le Laboratoire Kastler Brossel de l'ENS Paris, nous travaillons actuellement à la démonstration de l'exaltation de la luminescence lorsque les nanocristaux sont localisés à proximité immédiate d'un miroir. Ce système pourrait s'avérer intéressant dans la réalisation de sources à un photon.

Nous avons pour projet d'utiliser ces nanocristaux comme sondes luminescentes très robustes dans des milieux biologiques, pour cela un projet nous associant au CEA DRFMC Grenoble doit nous permettre de fonctionnaliser ces nano-objets.

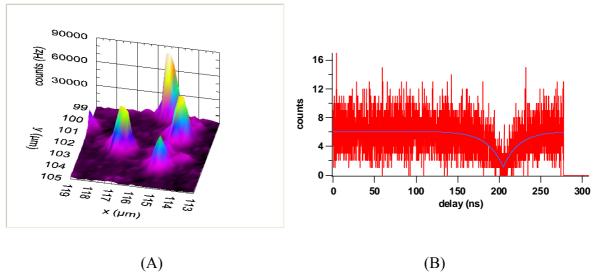


Figure 6 : Les nanocristaux de CdSe sont des nanoparticules luminescentes qui (taille de quelques nm), une fois déposées sur une surface de verre peuvent être détectées individuellement à l'aide de notre montage de microscopie confocale (Fig A). Une fois le volume de collection positionné sur un nanocristal, la construction de la fonction d'autocorrélation au temps courts présente une dépression caractéristique qui traduit l'émission photon par photon du nanocristal. En effet sur la figure (B) le zéro est situé à 205 ns, ainsi après avoir obtenu un photon à t=0, il faut attendre en moyenne 35ns pour obtenir un deuxième photon. Ce dégroupement photonique est une caractéristique commune aux sources à un photon.

VI.2.4.5. Etude de la diffusion de lipides et protéines marquées se déplaçant sur la membrane de cellules animales.

Ce projet nous associe très étroitement avec le Centre d'Immunologie de Marseille Luminy (CIML) pour étudier l'organisation de la membrane cellulaire animale. Le but actuel est de démontrer l'existence de domaines membranaires lipidiques de taille sub-micrométrique dénommés 'raft' qui doivent jouer un rôle important dans la fonctionnalité des protéines membranaires. Ces nano-objets, de densité lipidique variable, se déplacent sur la membrane biologique et affectent la diffusion de protéines et lipides diffusant sur cette même membrane. La technique FCS, que nous mis en place, nous permet de caractériser la statistique de diffusion de marqueurs luminescents se déplaçant sur la membrane biologique. C'est en étudiant finement cette statistique de diffusion que nous pouvons remonter à la présence ou non des rafts et à leur taille éventuelle.

Notre étude s'organise à la fois :

• autour de systèmes modèles de type liposomes géant ou nous observons les temps de diffusion associés aux différentes phases lipidiques formant le liposome.

• autour de systèmes cellulaires animaux sur des protéines membranaires liées à un lipide (attache GPI) et attachées sur le feuillet externe ou interne de la membrane

Procédure expérimentale

Plus précisément il s'agit tout d'abord de marquer avec des fluorophores adéquats les objets biologiques membranaires à observer (lipides ou protéines). Les cellules sont alors observées en microscopie confocale pour localiser la zone membranaire d'intérêt (figure 7-A). On déplace alors le volume confocal sur la membrane de l'objet (figure 7-A) et on construit la fonction d'autocorrélation du signal de fluorescence fluctuant provenant de la diffusion des fluorophores dans le volume de collection (figure 7-B).

C'est en ajustant cette fonction de corrélation expérimentale par des modèles de diffusion brownienne ou confinée que l'on peut avoir accès au processus de diffusion des protéines et lipides sur la membrane biologique.

NB : Cette méthode permet de travailler sur des cellules vivantes et ainsi de d'observer en direct l'évolution des signaux lorsque la cellule est soumise à des drogues ainsi qu'à des perturbations physiologiques extérieures.

Résultats obtenus :

- La fabrication des systèmes modèles de type 'liposome' est bien maîtrisée et nous avons pu observer la diffusion membranaire brownienne pour la phase lipidique fluide (figure 7).
- Les systèmes cellulaires sont plus complexes à analyser et nous avons réalisé des études systématiques sur des construction membranaires protéiques et lipidiques en présence et en l'absence de cholestérol membranaire (déplétion par la cyclodextrine). Nous observons toujours un allongement des temps de diffusion en l'absence de cholestérol ce qui laisse penser que le cholestérol joue un rôle prédominant dans la compartimentation des rafts membranaires.

Les études actuellement menées sur ce sujet associent physiciens et biologistes autour de systèmes biologiques cellulaires, d'expérimentations de biophotonique et de modélisations sur les deux sites de l'Institut Fresnel et du CIML. Nous avons concrétisé notre collaboration par une demande d'équipe projet au CNRS et une demande de Plan PluriFormation (PPF) porté par l'Université de la méditérannée dans le cadre du prochain plan quadriennal.

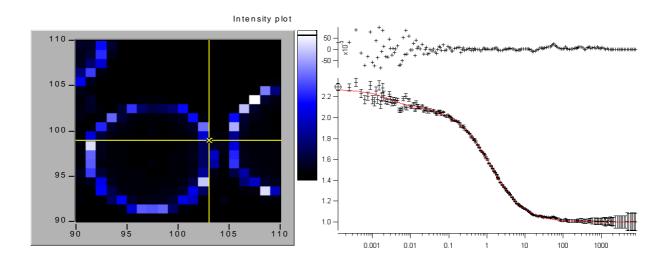


Figure 7 : Les membranes marquées sont imagées par microscopie confocale (fig A). Une fois positionné sur la membrane (fig A), on construit la fonction d'autocorrelation (fig B) qui permet d'avoir accès au coefficient de diffusion des objets étudiés ainsi qu'à la statistique de déplacement. (Sur cette exemple, diffusion brownienne de lipide dans la phase fluide d'un liposome géant DOPC marqués Bodipy PC).

Notre projet doit se poursuivre activement en mettant en place des outils de microscopie originaux permettant de s'affranchir des sondes luminescentes systématiquement utilisées. Pour cela nous pensons utiliser une technique optique non linéaire de spectroscopie Raman stimulée (CARS pour Coherent Antistokes Raman Scattering) mettant en œuvre des lasers femtosecondes. Par ailleurs l'utilisation de montage interférométrique doit nous permettre d'accroître la résolution suivant l'axe optique de nos microscope confocaux.

VI.2.5. Collaborations:

- Centre d'Immunologie de Marseille Luminy
- CEA DRFMC Grenoble
- Ecole Normale Supérieure Paris
- DCPR Nancy
- LPCML Lyon

VI.3. Axe 2 : Micro - nano composants optiques

Le groupe développe à la fois des moyens de simulation, de caractérisation et les techniques de réalisation associées pour mettre au point de nouveaux micro et nano composants optiques. Nous utilisons en particulier l'implantation ionique et la micro-lithographie des couches minces sur des wafers ou des extrémités de fibres optiques. Ces travaux intéressent les télécommunications optiques, les capteurs, et sont soutenus par des financements institutionnels et par différents industriels.

VI.3.1. Contexte

L'indice de réfraction d'une structure optique constituant un composant peut être contrôlé dans une direction perpendiculaire à sa surface en utilisant des filtres interférentiels optiques composés d'empilements de couches minces. Différentes techniques existent pour structurer les propriétés optiques dans les deux autres dimensions de l'espace. Nous nous intéressons plus particulièrement aux techniques héritées de la micro - électronique, et en particulier à la gravure et au dopage par implantation d'ions pour modifier localement l'indice de réfraction des matériaux. Les propriétés de ces composants dépendent de l'échelle à laquelle sont réalisées les structurations de l'indice de réfraction.

- dimensions supérieures à la longueur d'onde : propriétés thermiques des couches minces, capteurs optiques pour la détection biologique ou environnementale, guides d'ondes optiques et composants passifs ou actifs pour les télécommunications
- dimensions de l'ordre de grandeur de la longueur d'onde : réseaux de diffraction pour le filtrage et le routage de l'information en télécommunications optiques, optiques diffractives pour la furtivité
- dimensions inférieures à la longueur d'onde : problèmes fondamentaux relatifs à l'interaction lumière-matière à l'échelle nanométrique, propriétés optiques des matériaux nano-structurés, en particulier l'anisotropie artificielle de l'indice de réfraction pour réaliser des composants agissant sur l'état de polarisation de la lumière

Il est ainsi possible, en maîtrisant l'indice de réfraction dans les 3 dimensions de l'espace, de contrôler le comportement des ondes optiques. On peut alors obtenir des fonctions de filtrage en longueur d'onde et contrôler la distribution spatiale de la lumière.

Nous menons donc plusieurs études portant sur les micro et nano-composants. Les applications qui en découlent sont détaillées dans les paragraphes 1 à 3 suivants en gardant une classification selon l'échelle à laquelle sont réalisées les structurations de l'indice de réfraction.

Par ailleurs, nous décrivons aussi dans le paragraphe 4 les actions que nous menons pour l'amélioration des techniques de mesures par optique guidée et pour la mise en place d'une plate-forme de réalisation de micro et nano-composants.

VI.3.2. Les points forts

VI.3.2.1. Structurations supérieures à la longueur d'onde

 Guides d'ondes optiques et composants passifs ou actifs d'optique intégrée pour les communications optiques :

En utilisant les techniques de la micro - électronique sur silicium, des composants passifs d'optique intégrée nécessaires à la distribution tout optique du signal aux abonnés, peuvent être réalisés en grande série et à bas coût. Nous travaillons depuis plusieurs années en étroite collaboration avec IBS (Ion Beam Service), une PME située sur la zone industrielle de Rousset près d'Aix en Provence, afin de mettre au point une nouvelle technologie de fabrication basée sur l'implantation d'ions métalliques lourds. IBS prépare une production en grande série de ces composants au travers d'une spin-off, la société Silios Technologies, qui a été créée en juillet 2001 et qui compte maintenant 4 ingénieurs R&D. Cette technologie utilise différentes étapes telles que la photolithographie, le dépôt métallique, la gravure métal et l'implantation pour réaliser des micro et nano-composants à partir d'un support de silicium oxydé. Ceci a permis de réaliser des composants performants avec des densités d'intégration plus élevées que l'état de l'art (Fig. 1) et des pertes faibles (0,1 dB/cm). Cette technologie nouvelle (technologie I3O : Ion Implanted Integrated Optics) permet de réaliser des composants dont la surface reste plane, ce qui simplifie les techniques de recouvrement et de packaging, et qui peuvent s'adapter simplement et parfaitement aux modes issus aussi bien d'une fibre optique qu'au faisceau émis par la tranche d'une diode laser (Fig. 2). De plus, en terme de rayons de courbure accessibles et de densité d'intégration, la technologie I3O arrive au même niveau que les technologies à base de matériaux semi-conducteurs.

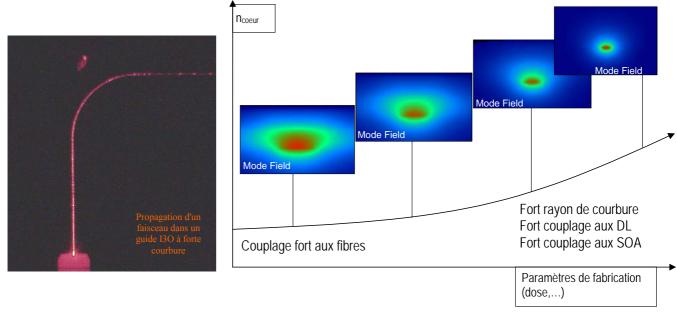


Fig. 1 : Guide I3O à fort rayon de courbure

Fig. 2 : Maîtrise des champs guidés par la technologie I3O. Adaptation aux fibres optiques, aux diodes laser ou aux amplificateurs à semi-conducteurs en fonction des paramètres de fabrication

Silios Technologies assure la fabrication des prototypes et l'industrialisation des composants. L'équipe COM, en tant que support de recherche de Silios, est en particulier chargée de la mise au point des techniques de caractérisation, telles que les mesures d'indices effectifs et d'indice de réfraction des guides d'ondes, les mesures de pertes à la propagation et les mesures de pertes à l'insertion. L'équipe COM assure aussi la recherche amont de nouvelles fonctionnalités et de nouveaux designs de composants à l'aide d'outils de simulation informatique (Fimmwave, WDM phasar, ...) [Brevets 3 et 4].

Un contrat de collaboration de recherches a été signé avec Silios Technologies. Silios Technologies bénéficie aussi d'un soutien de l'Anvar et de la confiance de "capitaux-risqueurs".

Nous nous intéressons aussi à la conception de <u>composants actifs d'optique intégrée</u>. Pour cela, nous travaillons en collaboration avec une équipe de l'Institut de Physique de Prague (République Tchèque). Il s'agit d'étudier les propriétés de matériaux réalisés par dépôt par ablation laser. Nous nous intéressons plus particulièrement au PLZT en couches minces et à ses propriétés électro-optiques (Fig. 3) pour concevoir de nouveaux filtres actifs reconfigurables électriquement pour le multiplexage de longueurs d'onde en télécommunication [RICL 21].

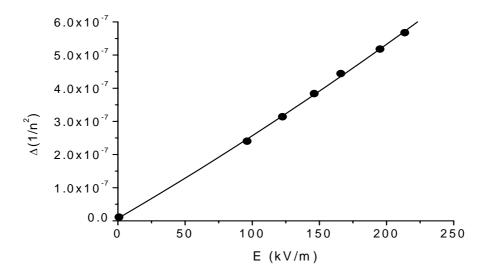


Fig. 3 : Mesure par la technique des m-lines (coupleur à prisme à réflexion totale) des propriétés electro-optiques d'une couche de PLZT déposée par ablation laser sur un substrat de silice. Le champ est appliqué entre 2 électrodes distantes de 300 μ m. La courbe est "fittée" à l'aide de la formule $\Delta(1/n^2) = r.E+R.E^2$ de manière à obtenir les valeurs du coefficient électro-optique linéaire r=2.3 pm/V et du coefficient électro-optique quadratique $R=1.3\times10^{-18}$ m²/V².

Dans le cadre de la collaboration avec Silios Technologies, le développement de composants d'optique intégrée nouveaux et de hautes performances se poursuit en s'intéressant plus particulièrement aux composants actifs (switches, amplificateurs, changeur de fréquences, compensateur de dispersion,...)

Par ailleurs, nous participons à une Action Concertée Incitative qui démarre en collaboration avec le Laboratoire Kastler Brossel. Le but est de réaliser une démonstration de mémoire quantique. Le principe repose sur l'utilisation de guides d'ondes dopés Erbium ou Praséodyme et d'un dispositif utilisant deux faisceaux laser.

VI.3.2.2. <u>Filtres à bande passante étroite et à réjection spectralement étendue</u> pour fibre optique monomode

Ces filtres particulièrement destinés aux télécommunications ont des bandes passantes allant de quelques picomètres au nanomètre, et une largeur de réjection allant jusqu'à 500 nm. Ils sont composés de Fabry Perot multiples où interviennent des miroirs bande étroite (responsables de la bande passante étroite) et des miroirs large bande (responsables de la réjection spectralement étendue). Leur concept initialement développé pour des fibres s'applique à tout guide monomode. Les filtres simulés sont en particulier :

- Des filtres hybrides composés de réseaux photo-inscrits dans des fibres optiques et de multicouches
- Des filtres composés de réseaux de Bragg à fort choc d'indice et de réseaux de Bragg à faible choc d'indice photo-inscrits dans des fibres optiques.

La réalisation de filtres hybrides à partir de réseaux de Bragg dans des fibres optiques donne lieu au développement de premières réalisations de micro-structuration en bout de fibres optiques qui permettront le perfectionnement des filtres interférentiels multicouches en bout de fibres optiques. Ce savoir faire sera utilisable pour la réalisation de tout filtre entièrement fibré (miroirs, passe-bandes,..) et de tout composant faisant appel à de tels filtres (laser à fibre, microcavité, etc..) [RICL 19, 22].

VI.3.2.3. <u>Propriétés thermiques des couches minces optiques</u>

Les propriétés thermiques des matériaux en couches minces sont différentes de celles des matériaux massifs et deviennent des paramètres critiques lorsque l'on s'intéresse à des composants de petites dimensions présentant des performances ultimes, par exemple pour les composants fonctionnant sous fort flux laser. Nous avons développé un banc de caractérisation original (Fig. 5) dans une configuration d'optique guidée qui, associé à un modèle de calcul rigoureux, nous permet de déterminer la capacité calorifique et la diffusivité thermique des matériaux en couches minces. L'absorption même faible du faisceau pompe modulé entraîne une augmentation périodique de la température et donc une variation périodique de l'indice de réfraction de la couche mince. Cette variation d'indice périodique est détectée en mesurant, à la fréquence de modulation du faisceau pompe, le déplacement périodique de la ligne de mode sur une photodiode reliée à une détection synchrone. Cette configuration pompe-sonde en modes guidés est extrêmement sensible aux paramètres thermiques de la couche mince. Le système permet de détecter des variations d'indice aussi faibles que 10^{-8} [RICL 30].

Compte tenu de la détectivité de ces techniques, nous nous intéressons maintenant à l'étude de capteurs utilisant des résonances sous le prisme.

VI.3.2.4. <u>Capteurs optiques pour la détection environnementale ou biologique</u>

Pour détecter la présence de nano-objets (molécules, particules), il est possible de concevoir des capteurs ultra - sensibles utilisant des micro - composants optiques. Il s'agit de créer soit une résonance électromagnétique de type mode guidé, soit une onde évanescente qui va être perturbée par des effets de surface. Nous souhaitons nous intéresser plus particulièrement au coupleur à prisme à réflexion totale. L'équipe COM utilise le coupleur à prisme à réflexion totale (Fig. 4) depuis plusieurs années pour mesurer les propriétés optiques des couches minces (indice de réfraction, pertes, propriétés thermiques). Il est ainsi possible de mesurer l'épaisseur de couches minces au nanomètre près, l'indice de réfraction avec une précision absolue de 10⁻³ et des variations d'indice de réfraction aussi faibles que 10⁻⁸. Le coupleur à prisme à réflexion totale devrait donc permettre de réaliser des capteurs ultra sensibles basés sur des mesures de variation de l'indice de réfraction. De plus, par la synthèse d'empilements de couches minces optiques, qui est aussi une des spécialités du laboratoire, il est possible d'exacerber l'intensité du champ évanescent et de contrôler sa localisation dans la zone où l'indice de réfraction est modifié. Il paraît donc possible d'atteindre des sensibilités bien plus grandes que celles des capteurs existants et surtout d'obtenir des capteurs peu sensibles aux phénomènes autres que la modification localisée de l'indice de réfraction à la surface. De nombreuses applications nouvelles dans les domaines de l'environnement, de la biologie, et de la médecine sont attendues.

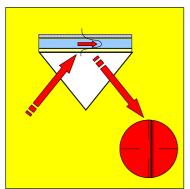


Fig. 4 : Principe d'un capteur à ondes guidées basé sur le coupleur à prisme à réflexion totale. La couche sensible (aux gaz ou au molécules biologiques) est positionnée à la surface d'un guide d'onde. La position de la ligne de mode (ligne noire) dans le faisceau réfléchi dépend de la modification d'indice de réfraction induite dans la couche sensible. Le dispositif actuel permet de mesure des variations d'indice aussi faible que 10^{-8} .

Les marchés pour ces composants sont très ouverts et nos travaux ont démarré début 2002 sur ce sujet avec un une thèse cifre et un partenariat avec la société Cybernetix

soutien Jemstic du CNRS, une thèse cifre et un partenariat avec la société Cybernetix spécialisée en robotique et en capteurs. Par ailleurs, nos sommes contractants du projet européen 5^{ième} PCRD « Nanophos » (coord : NHRF Grèce).

VI.3.3. Structurations de l'ordre de grandeur de la longueur d'onde

VI.3.3.1. Réseaux de diffraction et optiques diffractives

Nous avons développé depuis 1998 une activité de recherche sur les micro-composants diffractifs en espace libre. Le but de cette étude est de démontrer que l'on peut accroître leur efficacité de diffraction en les associant judicieusement à des empilements de couches minces. Il est ainsi possible de contrôler précisément la répartition de la lumière dans le composant et

de faire en sorte d'extraire la lumière préférentiellement dans la direction de diffraction voulue. Ainsi dans le cas d'un réseau de diffraction positionné dans le spacer d'une cavité Fabry-Perot réalisée en couches minces et spécialement accordée (Fig. 6), nous avons démontré théoriquement par calcul à l'aide de la méthode différentielle et expérimentalement que l'efficacité de diffraction peut être augmentée d'un facteur 10 à 24 (Fig. 7) [RICL 12,34].

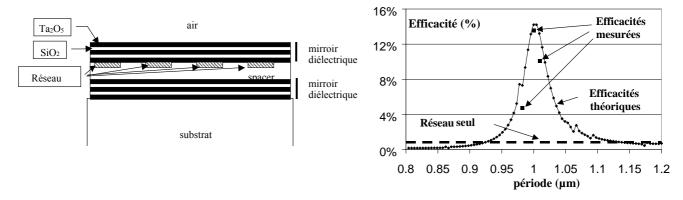


Fig. 6 : Réseau implanté dans le spacer d'une cavité Fabry-Perot en couches minces

Fig. 7 : Efficacités mesurées et théoriques de l'ordre 1 transmis en polarisation TE en fonction de la période du réseau (pour un réseau seul ou un réseau dans le spacer d'une cavité Fabry-Perot en couches minces)

VI.3.4. Structurations inférieures à la longueur d'onde

VI.3.4.1. Anisotropie artificielle pour composants polarisants

Les réseaux de diffraction de période inférieure à la longueur d'onde permettent de créer une anisotropie artificielle. En effet, le matériau se comporte comme un matériau homogène pour la lumière mais son indice de réfraction prend deux valeurs distinctes suivant que l'on considère la direction des traits du réseau ou la direction perpendiculaire. Nous avons démontré qu'en associant ces couches structurées, dont l'anisotropie artificielle peut être contrôlée en jouant sur les paramètres du réseau, à des empilements de couches minces optiques il est possible de réaliser des composants plans contrôlant l'état de polarisation de la lumière en incidence normale [RICL 29, 32]. Ces travaux se poursuivent en réalisant des réseaux d'indice par implantation localisée d'ions dans des couches de silice.

VI.3.4.2. <u>Filtrage des ondes guidées pour les communications optiques</u>

Les modulations de l'indice de réfraction des matériaux dans la direction de propagation des ondes guidées permettent de réaliser des fonctions de filtrage (Fig. 8). Des simulations numériques nous ont permis de montrer que tous types de filtres agissant sur l'amplitude ou la phase des ondes guidées peuvent être réalisés pourvu que l'on choisisse de manière adéquate les longueurs des sections dans lesquelles l'indice de réfraction est modulé. Il est ainsi possible de concevoir des miroirs pour ondes guidées, des filtres à bande passante très étroite, des filtres égaliseurs de gain ou encore des filtres permettant de compenser la dispersion chromatique dans les fibres optiques [RICL 27,17]. Ces filtres, réalisés en optique intégrée dans des matériaux à haut indice de réfraction et avec de fortes modulations, ont des dimensions bien plus petites que ceux utilisés actuellement en technologie "fibre photo-inscrite". Ils permettent aussi de réaliser des fonctions de filtrage plus complexes (Fig. 9).

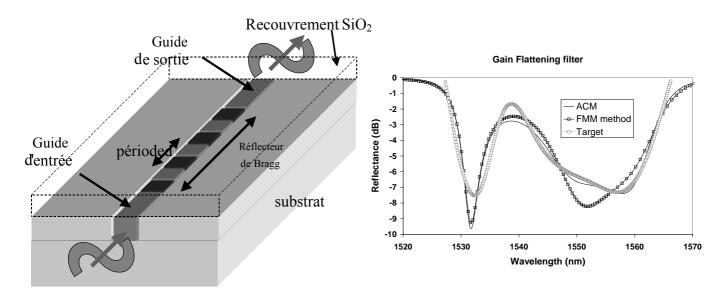


Fig. 8 : Filtre à ondes guidées réalisé en optique intégrée. Réflecteur de Bragg si les longueurs des sections guidantes sont $\mathcal{N}(4n_{\text{eff}})$

Fig. 9 : Facteur de réflexion d'un filtre égaliseur de gain réalisé en optique intégrée à partir du réflecteur de Bragg de la figure 8. Les longueurs des sections guidantes ont été ajustées par calcul pour obtenir la fonction de filtrage souhaitée (ACM : méthode d'Abelès ; FMM : Film Mode Matching). Le composant mesure 25 µm.

Après cette phase essentiellement théorique, nous chercherons à réaliser et à caractériser ces filtres au travers de collaborations établies (Silios Technologies) ou nouvelles.

VI.3.5. 4. Moyens de réalisation et de caractérisation de micro et nano - composants

En parallèle, nous avons amélioré les techniques de caractérisations par optique guidée dans le cadre de contrats d'études avec plusieurs industriels. Nous avons aussi développé au

laboratoire une plateforme de micro et nano - technologies (photolithographie, insolation holographique, gravures humide et ionique réactive) grâce à deux contrats européens (fonds FEDER et FSE) permettant l'acquisition du matériel et le recrutement d'un ingénieur pendant 1 an.

VI.4. Compléments/rayonnement/diffusion de l'information scientifique

- « Dynamique des Systèmes Moléculaires Organisés par détection optique ultrarésolue », Univ. Méditerranée, Montant total : 744 kEuros dont demandé au PPF pour Fresnel : 274 kEuros- PPF demandé
- GDR Onde : n° 2451, Groupe thématique 2 : cristaux photoniques, micro cavités, matériaux complexes et biologiques (Rigneault)
- H. Rigneault est membre du comité de pilotage du RTP « Cristaux Photoniques »
- H. Giovannini est membre du comité de pilotage du RTP ISO
- Programme BARANDE de collaboration bi-latérale avec l' Institut de Physique de Prague (F. Flory)
- L. Escoubas a organisé le Worshop « Photonic Integrated Circuits », Marseille, Septembre 2002, pour la préparation d'un PIREX
- L. Escoubas est correspondant du projet Nanophos (5^{ième} PCRD, thématique capteurs).

VI.5. <u>Doctorants COM</u>

VI.5.1. Doctorants présents au 01 Septembre 02

Nom, Prénom	Date de Naissance	Date d'arrivée dans l'unité	Type de bourse	Direction de thèse	DEA d'origine	date de soutenance
SANDEAU Nicolas	07/06/197 9	2002	M.E.N.R.T.	H. GIOVANNINI	Optique, Image et Signal	2005
WAWREZINIEC K Laure	22/02/197 9	2002	Allocation couplée	H. RIGNEAULT	Lasers et Matières	2005
MAZINGUE Thomas	27/11/197 6	2001	CIFRE	F. FLORY / L. ESCOUBAS	Matériaux de Lyon	2004
DROUARD Emmanuel	15/04/197 7	2000	C.N.R.S./ Région	F. FLORY / L. ESCOUBAS	Optique, Image et Signal	2003
ETIENNE Emilien	08/03/197 7	2000	M.E.N.R.T.	H. RIGNEAULT/ PF. LENNE	Rayonnement et Plasmas	2003

VI.5.2. Thèses soutenues

Nom, Prénom	Type de bourse	Direction de thèse	DEA d'origine	date de soutenance	Devenir professionnel
BEGON Cédric	DG.A.	H. RIGNEAULT	Optique, Image, Signal	01/03/2002	Ent.
HUGUET- CHANTOME Pascal	M.E.N.R.T.	F. FLORY / L. ESCOUBAS	Optique, Image, Signal	01/11/2001	Ent.
LEMARCHAND Fabien	CNRS/Région	H. GIOVANNINI	Optique, Image, Signal	01/12/1999	Ens. Supérieur
MAHODAUX Christine	MESR	H. RIGNEAULT / H. GIOVANNINI	Optique, Image, Signal	01/10/1999	Ent.
ROBERT Stéphanie	MESR	H. RIGNEAULT	Optique, Image, Signal	01/10/1998	Ent.
TISSERAND Stéphane	CIFRE	F. FLORY	Optique, Image, Signal	01/12/1998	Ent.

VI.6. **COM**: Production scientifique

34 RICL, 7 CI, 13 Proc., 4 brevets et 3 Bookch

VI.7. Publications dans revues internationales avec comité de lecture

- Escoubas L., Flory F., Lemarchand F., Drouard E., Roux L., Tisserand S., Albrand G., "Fabry-Perot multilayers for enhancing the diffraction efficiency of ion-implanted gratings", Applied Optics, vol. 40, n°10, pp1587-1592, 2001
- Drouard E., Huguet-Chantôme P., Escoubas L., Flory F., "dn/dT measurements performed using guided waves and their application to the temperature sensitivity of WDM filters", Appied Optics, Vol.41, No.16, pp.3132-3136, 2002.
- Flory F., Escoubas L., Lazaridès B., "Artificial anisotropy and polarizing filters", Applied Optics, Vol.41, No.16, pp.3332-3335, 2002.
- Lenne P-F., Colombo D., Giovannini H., Rigneault H., "Flow Profiles and directionality in Microcapillaries Measured by fluorescence correlation spectroscopy", Single Molecules, Vol.3, No., pp.194-200, 2002.
- Huguet-Chantôme P., Escoubas L., Flory F.,, "Guided-wave technique for the measurement of dielectric thin-film materials thermal properties", Applied Optics, Vol.41, No.16, pp.3127-3131, 2002.
- Flory F., Escoubas L., "Optical properties of nanostructured thin films art. soumis", Progress in Quantum Electronic Journal, Vol., No., pp., 2002.
- Lenne P-F. ,Etienne E. , Rigneault H. ,, "Subwavelength patterns and high detection efficiency in fluorescence correlation spectroscopy using photonic structures", Appl. Phys Lett., Vol.80, No., pp.4106-4108, 2002.
- Escoubas L., Drouard E., Flory F., "Theoretical study of amplitude and phase filtering of guided waves", Applied Optics, Vol.41, No.16, pp.3084-3091, 2002.

- P.M. Adam, S; Benrezzak, J.L. Bijeon, P. Royer, S; Guy, B. Jacquier, P. Moretti, R. M. Montereali, M. Piccinini, F. Menchini, F. Somma, C. Seassal, H. Rigneault, "Fluorescence imaging of submicrometric lattices of colour centres in LiF by apertureless scanning near-field optical microscope", Optics Express, Vol. 9, pp. 353-359, 2001.
- O. Chambenoit, Y. Hamon, D. Marguet, H. Rigneault, M. Roseneu, G. Chimini, "Specific docking of alipoprotein A-I at the cell surface requires a functionnal ABCA1", J Biol Chem. Vol. 30, 276(13): 9955-60, 2001.
- A; Belarouci, F. Menchini, H. Rigneault, B. Jacquier, R. M. Montereali, F. Somma, P. Moretti, "Spontaneous emission properties of color centers based optical microcavities", Opt. Com. Vol. 189, pp. 281-287, 2001.
- Altmann S., Lenne P-F., Hörber J.K., "Multiple sensor stabilizatin system for local probe microscopes", Rev.Sci Instrum., Vol.72, No., pp.142-149, 2001.
- Bittebierre J., Lazaridès B.,, "Narrow-bandpass filters with broad rejection band for single-mode waveguide", Applied optics, Vol.40, No.1, pp.1-9, 2001.
- Jelinek M., Lancok J., Deineka A., Jastrabik L., Soukup L., Flory F., Escoubas L., "Optical and waveguiding properties of PLZT thin films deposited by laser ablation", Ferroelectrics, Vol.264, No., pp.267-272, 2001.
- Belarouci A., Jacquier B., Moretti P;, Robert S., Rigneault H., "Praseodymium-doped planar multidielectric microcavities: induced lifetime changes over the emission spectrum", J. Opt. Soc. Am. B, Vol.18, pp.832-838, 2001.
- Bittebierre J., Lazarides B., "Bicorn filters for single-mode waveguides", Applied Optics, Vol.40, No.28, pp.5028-5033, 2001.
- F. Bonfigli, B. Jacquier, R. M. Montereali, P. Moretti, M. Piccinini, H. Rigneault, F. Somma, "Color center luminescence decay times in optical microcavities based on LiF films", Journal of luminescence, Vol. 94-95, pp. 811-814, 2001.
- Escoubas L., Drouard E., Flory F., "Designing waveguide filters with optical thin-film computational tools", Optics Communications, Vol.197, No., pp.309-316, 2001.
- Lenne P-F., Raae A.J., Altman S.M., et al., "States and transitions during forced unfolding of a single spectrin repeat", FEBS Letters, Vol.476, No., pp.124-128, 2000.

- H. Rigneault, J. Broudic, B. Gayral, J. M. Gérard, "Far-field radiation from quantum boxes located in pillar microcavities", Optics Letters, Vol. 26, Issue 20, pp. 1595-1597, 2001.
- Begon C., Rigneault H., Jonsson P., Rarity J.G.,, "Spontaneous emission control with planar dielectric structures: an asset for ultrasensitive fluorescence analysis", Single Molecules, Vol.1, No., pp.207-214, 2000.
- Rigneault H., Lemarchand F., Sentenac A., "Dipole radiation into grating structures", J. Opt. Soc. Am., Vol.A 17, No., pp.1048-1058, 2000.
- Escoubas L., Flory F., Lemarchand F., During A., Roux L., "Enhanced diffraction efficiency of gratings in multilayers", Optics Letters, Vol.25, No.4, pp.194-196, 2000.
- Monneret S., Huguet-Chantôme P., Flory F.,, "m-lines technique: prism coupling measurement and discussion of accuracy for homogeneous waveguides", J. Opt. A: Pure Appl.Opt., Vol.2, No.3, pp.188-195, 2000.
- H. Rigneault, F. Lemarchand and A. Sentenac, "Dipole radiation into gratings structure", J. Opt. Soc. Am. A 17 1048, 1999.
- F. Lemarchand, A. Sentenac, E. Cambril and H. Giovannini, "Study of the resonant behavior of waveguide gratings: Increasing the angular tolerance of guided-mode filters", Journal of Optics A: Pure and Applied Optics, Special issue on Electromagnetic Optics 1, 545-551, 1999.
- 8 H. Rigneault, F. Lemarchand, A. Sentenac and H. Giovannini, "Extraction of light from sources located inside waveguide grating structures", Optics Letters 24, 148-150, 1999.
- A. Belarouci, F. Menchini, B. Jacquier, P. Moretti, H. Rigneault, S. Robert, "Luminescence properties of Pr3+doped optical microcavities", J. of Luminescence, Vol.83-84, pp.275-282, 1999.
- J. Massaneda, F. Flory, E. Pelletier, "Determination of the refractive index of layers in a multilayer stack by guided wave technique", Applied Optics, Vol., No., pp., 1999.

- Rigneault H., Lemarchand F., Sentenac A., Giovannini H., "Extraction of light sources located inside waveguide grating structures", Optics Letters, Vol.24, No., pp.148-150, 1999.
- Rigneault H., Robert S., Begon C., Lamarque F., Jacquier F., Moretti P., Jurdyc A.M., Belarouci A., "Spontaneous emission intoplanar multi-dielectric microcavities: Theorical and experimental analyses of rare earth ion radiations", Optical Materials, Vol.11, No., pp.167-180, 1999.
- Rigneault H., Lemarchand F., Sentenac A., Giovannini H., "Strong extraction coefficient for sources located inside waveguide grating structures", Journal of Optics A: Pure and Applied Optics, Special issue on Electromagnetic Optics, Vol.1, No., pp.507-511, 1999.
- Lancok J., Jelinek M., Grivas C., Flory F., Lebrasseur V, Garapon C., "Structural and optical characterisation of Nd doped YALO3 films deposited on sapphire substrate by pulsed laser deposition", Thin Solid Films, Vol.1-6, No., pp.39-44, 1999.
- Lemarchand, A. Sentenac, E. Cambril, H. Giovannini, "Study of the resonant behavior of waveguide gratings: increasing the angular tolerance of guided-mode filters", Journal of Optics A, Pure and applied optics, Special issue on Electromagnetic Optics, Vol.1, No., pp.545-551, 1999.

VI.7.1. Communications avec actes

- Escoubas L., Drouard E., Flory F., "Modeling of optical guided wave filters", SPIE, Vol.4640, No., pp., 2002.
- Flory F., Escoubas L., Drouard E., "Study of the refractive index of nano structured optical materials", SPIE, Vol.4640, No., pp., 2002.
- H. Rigneault, P.F. Lenne, H. Giovannini, "Fluorescent Correlation Spectroscopy with sub-wavelength photonic structures", 7th international Wokshop on "Single Molecule Detection and Ultra Sensitive Analysis in the Life Sciences" PicoQuant, Berlin, September, 2001.
- H. Rigneault, "Détection optique de molécules biologiques individuelles", Les transversales du CNRS juin 2001.

- 9 Lancok J., Jelinek M., Escoubas L., Flory F., "Structural and optical properties of PLZT thin films deposited by PLD", SPIE, Vol.4397, No., pp.305-308, 2001.
- Rigneault H., Broudic J., Gayral B., Gérard J.M., "Fard-field radiation from quantum boxes located in micropillars", International quantum Electronics Conference, Nice, 10-15 sept., 2000.
- Escoubas L., Flory F., Lemarchand F., Roux L., Albrand G., "Gratings in resonant multilayer structures", Proc. SPIE, Vol.4086, No., pp.338-343, 2000.
- C. Begon, F. Lemarchand, H. Rigneault, J. Rarity, "Increasing light collection efficiency in ultrasensitive fluorescence analysis with dielectric mirrors and micro-structures", 6th International Workshop on Single Molecule Detection and Ultrasensitive Analysis in Life Sciences, Berlin, 27-29 sept, 2000.
- Flory F., Huguet-Chantôme P., Escoubas L., Monneret S., "Study of refractive index modifications and of thermal properties of optical thin films with the prisme coupler", Proc. SPIE, Vol.4086, No., pp.786-790, 2000.
- Flory F., Escoubas L., Tisserand S., Nicolas E., Albrand G., Lemarchand F., Roux L., "Enhancement of the diffraction efficiency of titanium implanted gratings by associating them with optical interference coatings", EUROPTO, Conf. Advances in Optical Interference Coatings, Berlin, Vol.3738, No., pp.306-315, 1999.
- H. Rigneault, C. Begon, "Spontaneous emission modifications in planar microcavities: application to auto-fluorescence control for thin film under UV irradiation", Avances in Optical Interference Coatings, SPIE Europto Series, Vol. 3738, pp. 280-288, 1999.
- Begon C., Rigneault H., Rarity J., Bazin H., "Luminescence control and detection of biological markers,", Conf. "31st European Congress on Atomic Spectroscopy" Marseille, 6-9 juillet, 1999.
- Mahodaux C., Rigneault H., Giovannini H., Moretti P., "Stress in optical thin films Conf.Optical Systems design and Production", EUROPTO, Conf. Advances in Optical Interference Coatings, Berlin, Vol.3738, No., pp., 1999.

VI.7.2. Conférences invitées dans des congrès internationaux

- Lenne P-F., Colombo D., Giovannini H., Rigneault H., "Flow profiling using fluorescence correlation spectroscopy", Linz Winter Workshop of nanoproves and fluorescence spectroscopy, Linz, January, 2002.
- Rigneault H. " "Single molecule enhancement using photonic structures", Colloque Franco-Allemand de Physique, "Single molecule physics" Fondation des Treilles, 12-18 avril, 2002.
- E. Etienne, P-F Lenne, H. Rigneault, "Fluorescence correlation spectroscopy on mirrors", Linz Winter Workshop of nanoproves and fluorescence spectroscopy, Linz, January, 2002.
- Flory F., Escoubas L., Lazarides B., Huguet-Chantome P.,, "Characterizations of thin films for Optical Microcomponents", Optical Interference Coating 2001, Banff, Canada, 15-20 July, 2001.
- 3 Lenne P-F. ,, "Dépliement forcé de protéines individuelles", Congrès de la Société Française de Physique, Strasbourg, July, 2001.
- 2 P-F Lenne, "Forced unfolding of a single protein domain", In Nanobiotec Congress, Münster-Germany.
- Flory F., Huguet-Chantôme P., "Measurement of the thermal properties of thin films with the two beam prism coupler", 4th International Conf. 'Thin films physics and applications, Shanghaï, Chine, 8-11 May, 2000.

VI.7.3. Brevets

4	Brev	2000	S. Tisserand, L. Roux, F.	Guide d'onde comportant un canal sur un	(Société IBS). FR 0016549.
		Déc	Torresgossa, F. Flory, L.	substrat optique.	
			Escoubas, E. Drouard.		

3	Brev	2002 Avril	L. Roux, S. Tisserand, F. Reversat, S. Jacob, E. Drouard, L. Escoubas.	Adapteur de mode optique comportant un canal sur un substrat optique.	(Société Silios Technologies). F01069.
2	Brev	2002 Mars	P.F. Lenne, L. Escoubas, H. Rigneault, H. Giovaninni, W. Lenne.	Dispositif de mesure des propriétés optiques de l'œil.	(Société Lumeau). FR 64002 N.
1	Brev	2001	H. Rigneault, P.F. Lenne.	Dispositif permettant la détection exaltée et l'analyse de la diffusion des particules luminescentes ou réfléchissantes optiquement.	(CNRS). FR63860 M.

VI.7.4. Chapitres d'ouvrages

3	BookC h	2002	S. Altmann, P-F Lenne	Forced unfolding of single proteins.	Methods in Cell biology. Vol. Atomic Force Microscopy in Cell E B.P. Jena and J.K. Hörber, editors. Academic Press
2	BookC h	2002	H. Rigneault	Optical thin films for spontaneous emission control	Norbert Kaiser Editeur, Springer series in Photonics sortie prévinov. 2002
1	BookC h	2002	Escoubas L. , Flory F.,	Optical thin Films for micro-components	Springer Series in Optical Sciences - Optical Interference Coatin Kaiser N., Pulker J. eds, Springer - Verlag, Vol., No., pp., 2002

VI.7.5. COM: Bilan financier

VI.7.6. Contrats de recherche référencés R3

ANNEE	Contrat	Compte N°	Equipe	Resp.	Montant HT en EUROS	TOTAL par année	Solde au 17.10.02
	PECHINEY	705 R3	COM	Flory	9 604.29		1 555.33
1999	ANVAR	708 R3	COM	Flory	3 792.17		0.00
	CNET/France Télécom	713 R3	COM	Rigneault	57 930.63	71 327.08	21 632.07
2000	DGA	717 R3	COM	Rigneault	29 074.01		123.29
2000	ENS Cachan	720 R3	COM	Rigneault	19 119.85	48 193.86	3.56
2001	ANVAR	731 R3	COM	Escoubas	4 180.46		2 286.96
2001	Ion Beam Serv.	732 R3	COM	Flory/Escoubas	89 999.95	94 180.41	82 305.05
	Т	otal CON	213 701.36		107 906.26		
	MOYE	NNE SUR	53 425.34				

VI.7.7. Contrats de recherche référencés C

ANNEE	Contrat	Fact n°	Equipe	Chercheur	Date	Montant HT en EUROS	TOTAL par année	Solde au 17.10.02
	Angénieux	F105	COM	Escoubas	13/07/1999	800.36		
1999	CIS BIO	F106	COM	Rigneault	24/09/1999	4 802.14		
	CIS BIO	F109	COM	Rigneault	23/11/1999	5 602.50		
	Cybernétix	F111	COM	Rigneault	17/12/1999	914.69	12 119.70	
0000	CIS BIO	F151	COM	Rigneault	21/01/2000	5 602.50		
2000	CIS BIO	F156	COM	Rigneault	14/09/2000	3 811.23	9 413.73	
	LUNEAU S.A.	F204	COM	Lenne	07/05/2001	6 373.29		
	THOMSON	F208	COM	Flory/Escoubas	21/09/2001	7 265.42		
2001	HIGH WAVE Lannion	F202	COM	Escoubas	07/05/2001	1 524.49		
	HIGH WAVE Marseille	F207	COM	Escoubas	21/09/2001	7 622.45		
	CEZANNE	F4-24	COM	Rigneault	03/12/2001	5 933.32	28 718.96	
		TOTAL 19	50 252.38		0.00			
		Moyenne	12 563.10					

VI.7.8. Opérations spécifiques CNRS

ANNEE	Origine	CDP	Equipe	Chercheur	Montant HT en EUROS	TOTAL par année
1999	CNRS Prog.	2L0 153	СОМ	Rigneault	4 878.37	4 878.37
	CNRS Prog	2L0 153	COM	Rigneault	7 317.55	
2000	CNRS Action Incitative	2C0 153	COM	Rigneault	6 097.96	
	CNRS Action Incitative	2D1 153	COM	Rigneault	45 734.71	59 150.22
2001	NRS Action Incitative 2D1 153		СОМ	Rigneault	22 867.35	
	CNRS Action Incitative	2JE 153	COM	Rigneault	25 916.33	48 783.69
	CNRS Action Spécifique	0MS 153	СОМ	Lenne	30 489.80	
2002	CNRS Action Incitative	2P1 153	COM	Rigneault	98 658.00	
2002	CNRS Actions incitatives	2JE 153	COM	Escoubas/Rigneault	26 000.00	
	CNRS Actions incitatives	2A4 153	COM	Escoubas	25 084.00	180 231.80
		293 044.07				
	Мс	73 261.02				

VI.7.9. Opérations spécifiques Ministère

ANNEE	Origine	CDP	Chercheur	Montant HT en EUROS	TOTAL par année
	MENRT Programme	531 R1	Rigneault	12 640.88	
1999	MENRT Programme	531 R1	Giovannini	22 867.35	35 508.23
					0.00
	TOTAL 1999	35 508.23			
	Moyenne su	8877.00			

VI.7.10. Subventions collectivités territoriales

ANNEE	Contrat	Compte N°	Equipe	Chercheur	Montant HT en EUROS	TOTAL par année	Solde au 17.10.02
2000	P.A.C.A	714 R3	COM	Flory	50 563.38		778.41
2000	Conseil Général	718 R3	COM	Flory	20 428.17	70 991.54	1 171.15
2001	Conseil Général	723 R3	COM	Flory/Escoubas	106 714.31		307.56
2001	Conseil Régional	724 R3	COM	Flory/Escoubas	38 112.25		0.00
2001	Conseil Régional	725 R3	COM	Flory/Escoubas	19 119.85	163 946.42	1 879.37
2002	Conseil Régional	502429	COM	Rigneault	100 000.00	100 000.00	100 000.00
		Total COM	334 936.000				
	Moyeni	ne sur quatr	83 734.000				

VI.7.11. Fonds européens

ANNEE	Contrat	Compte N°	Equipe	Chercheur	Montant HT Fonds Européens	TOTAL Fonds Européens
2002	FEDER		СОМ	Flory/Escoubas	177 871.00	
	FSE		СОМ	90 282.50	268 153.50	
		TOTAL C	268 153.50			
	Mo	yenne su	67 038.38			

EQUIPE TEM: EFFECTIFS

Nom, Prénom	Date de naissance	Corps, grade	Section CNU ou CNRS	HDR	Date d'arrivée dans l'unité	Etablissement d'affectation	% effectif
VINCENT Patrick	sept-45	PR1	30	X	jan. 76	U III	0.50
BELKEBIR Kamal	juin-66	MC	63		sept. 97	Univ. Provence	1.00
DELEUIL ROGER		PrCE		X		Univ. Provence	0.05
GAZOTY Gérard	mai-45	MC	63		jan. 96	UIII (I.U.T.)	1.00
GUERIN Charles-Antoine	juil-72	MC	30		sept. 99	U III	1.00
LITMAN Amélie	01-mai	MC	63		oct-02	Univ. Provence	1.00
MICOLAU Gilles	oct-72	MC	63		sept.02	U III	1.00
SABOUROUX Pierre	avr-66	MC	63		jan. 96	Univ. Provence	1.00
SAILLARD Marc	sept-61	PR2	63	X	sept. 87	Univ. Provence	1.00
SORIANO Gabriel	oct-72	MC			sept. 01	U III	1.00
TORTEL Hervé	févr-70	MC	63		sept. 96	Univ. Provence	1.00
NICOLET André	janv-62	PR2	63	X	janv. 00	U III	0.50
GEFFRIN Jean-Michel	31/10/65	IR2	08		nov. 2002	CNRS	0.50
FORESTIER Frédéric	15/1/6	IE	BAP VI		sept. 2000	U III	0.50
SENTENAC Anne	1/7/66	CR1	section 8	X	nov. 97	C.N.R.S.	0.50
GIOVANNINI Hugues	juil-63	PR2	63	X	oct. 91	UIII (I.U.T.)	0.50
HUGOUNENC Roland	16/7/4 5	IE2				Univ. de Provence	0.80

Soit, en effectifs temps plein (hors administration) : 12,85 Dont 0,5 chercheur CNRS, 1 délégation CNRS, Et 5,5 HDR

VII - EQUIPE TEM: BILAN SCIENTIFIQUE

VII.1. <u>Diffusion par des surfaces rugueuses</u>

VII.1.1. Introduction

Les compétences de l'Institut Fresnel en modélisation de la diffraction par des surfaces rugueuses et ses recherches sur les phénomènes associés (rétrodiffusion cohérente, localisation des ondes de surface) sont largement reconnues. Ces travaux, initiés au laboratoire au début des années 80 à l'initiative de D. Maystre, s'appuyaient déjà sur l'expérience héritée de quinze années d'étude des réseaux de diffraction. Notre ambition, en évoluant sur un tel substrat, est de maintenir le laboratoire au plus haut niveau international dans ce domaine. Sur le plan scientifique, l'objectif est de contribuer à la mise au point de méthodes de caractérisation d'un état de surface par sondage électromagnétique, en Optique et en Micro-ondes. En terme de moyens humains, cela s'est traduit par le recrutement de C. A. Guérin en 1999 et de G. Soriano en 2001, tous deux Maître de Conférences à l'Université Aix-Marseille III.

VII.1.2. Développement d'un code de référence

Depuis quelques années, grâce à la progression combinée de la puissance des ordinateurs et des méthodes numériques, il est devenu réaliste, en régime harmonique, d'étendre l'utilisation des méthodes rigoureuses aux surfaces quelconques, *i. e.* ne présentant pas de direction d'invariance, conduisant à la résolution d'un problème tridimensionnel. Dans ce contexte, nous avons engagé une thèse (1997 – 2000) destinée à développer un modèle et l'outil numérique associé. Par ailleurs, cette étude a été motivée par les besoins exprimés :

- par la communauté de la télédétection spatiale, pour une meilleure interprétation des données satellitales,
- par les industriels de l'aéronautique, du spatial et de l'armement.

Ainsi, la bourse de thèse a été cofinancée par l'Aérospatiale Cannes, et une convention de 415 kF HT a été signée avec l'ONERA (1998 – 2000). Sans revenir sur les détails de la méthode, décrits dans le dernier rapport d'activité du laboratoire en 1999, rappelons ce qui fait l'originalité de notre travail :

- le choix d'une combinaison des équations de Stratton-Chu qui bannit toute singularité forte des noyaux des équations intégrales, ce qui garantit une bonne précision des résultats sans recours à des méthodes de résolution très sophistiquées mais coûteuses en temps de calcul
- la généralisation au problème 3D du principe de superposition de faisceaux, ce qui permet de traiter une surface de taille arbitraire par superposition des courants de surface associés à des faisceaux focalisant sur une petite partie de la surface,

• la mise en place d'une approximation dite "d'impédance" qui, pour des milieux de forte permittivité, établit une relation locale entre les champs électrique et magnétique tangentiels, réduisant ainsi d'un facteur 2 le nombre d'inconnues dans les équations intégrales.

Au bilan, ce travail nous permet de disposer d'un outil de référence, comme il en existe peu dans la communauté internationale (à notre connaissance, 2 aux USA, 1 à Hong-Kong). Pour disposer des derniers raffinements en méthodes numériques, nous collaborons avec l'Université de la Ville de Hong-Kong dans le cadre de l'Action Intégrée Procore, qui finance des visites régulières.

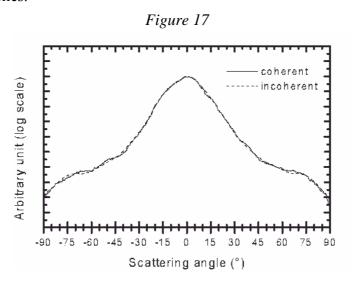
Certes cet outil reste encore trop lourd à mettre en œuvre pour être confortablement exploité dans des problèmes de diffraction inverse visant à caractériser un état de surface, mais il s'avère indispensable pour cerner le domaine de validité des méthodes approchées que nous devons développer pour les applications en télédétection ou en contrôle non destructif.

VII.1.3. Télédétection océanique

Les contacts fréquents avec nos collègues régionaux de l'IRPHE-IOA et du LSEET, spécialisés en hydrodynamique marine et en télédétection, nous ont conduit à nous focaliser sur les problèmes de télédétection océanique. Une spécificité évidente de la surface de la mer est son caractère multi-échelles très marqué. Dès lors, les classiques approximations hautes et basses fréquences sont mises en défaut. Ainsi, l'approximation de Kirchhoff suppose que le rayon de courbure de la surface est très supérieur à la longueur d'onde. Dans le cas de la mer, elle ne peut donc s'appliquer qu'aux grandes échelles. La méthode des petites perturbations suppose quant à elle que la hauteur quadratique moyenne est très inférieure à la longueur d'onde et ne peut donc que fournir la contribution des petites échelles. A partir de ces deux contributions, des modèles à deux échelles ont été proposés, mais les résultats varient selon le choix du nombre d'onde de coupure séparant les basses et les hautes fréquences spatiales du spectre de mer.

Un effort tout particulier a donc été porté au cours des 20 dernières années sur l'élaboration de méthodes approchées adaptées aux surfaces multi-échelles, avec l'ambition de couvrir simultanément les domaines de validité des approximations hautes et basses fréquences. Il en est ressorti un panel de méthodes dont le point commun consiste à écrire l'amplitude de diffraction sous la forme d'une série, dont les termes incluent des intégrales, simple pour le premier ordre, double au second ordre, ... Ces développements s'apparentent à une série de Neumann, mais combinent les intégrations en variables d'espace et de Fourier. Quelle que soit l'approche retenue, la complexité du calcul fait qu'aucune de ces méthodes n'est couramment utilisée au delà de l'ordre 1 sans approximation supplémentaire, et il s'avère qu'aucune de ces méthodes ne recouvre complètement les domaines de validité des approximations hautes et basses fréquences si l'on se restreint au 1^{er} ordre. L'autre conclusion essentielle de cette vaste étude est l'importance jouée par la distribution des pentes. Toutes

ces méthodes peuvent êtres considérées comme des approximations faibles pentes. Heureusement, les pentes de la surface océanique, hormis quelques événements localisés en certains points proches du déferlement, sont assez faibles pour entrer dans le cadre de ces approximations. Néanmoins, pour traiter correctement l'ensemble des échelles de la surface océanique avec ce type de méthode, itérer à l'ordre 2 est indispensable.


Après avoir évalué, par confrontation avec le modèle rigoureux, le domaine de validité de la « Small Slope Approximation » proposée par A. Voronovich (au 1^{er} ordre, notée SSA1 ci-dessous), nous avons orienté nos recherches en modélisation selon 2 directions :

- la mise au point d'un nouveau modèle à deux échelles,
- le développement d'une approximation faibles pentes sur les noyaux de l'équation intégrale.

Ces deux points sont développés ci-après.

VII.1.3.1. Modèle à 2 échelles

L'hypothèse fondamentale dans tout modèle à deux échelles réside dans l'absence d'effets cohérents au delà de l'échelle de « coupure » qui divise le spectre de la surface en deux. Pour valider cette hypothèse, nous avons procédé à deux expériences numériques. D'une part, nous avons superposé les diagrammes d'intensité produits par un spot lumineux de faibles dimensions scannant la surface, d'autre part, nous avons calculé le diagramme résultant de l'éclairement de la même surface par un seul grand faisceau. La première expérience ne permet pas de capter les éventuels effets cohérents résultant d'interactions à grande distance. L'intégration des speckles par un capteur fictif est menée de sorte que la résolution angulaire soit la même dans les deux cas. On constate sur la figure 1 ci-après que les diagrammes coïncident parfaitement, ce qui, en incidence faible du moins, valide l'approche à 2 échelles.

Les modèles à 2 échelles actuels combinent une approximation basses fréquences avec l'optique géométrique. L'inconvénient majeur provient de ce que les domaines de validité de ces approximations ne se recouvrent pas, en termes d'échelles, et que le résultat dépend donc de l'échelle de coupure. Notre proposition consiste à remplacer l'approximation basses fréquences par SSA1, car le domaine de validité de cette dernière est beaucoup plus étendu, comme le confirme une étude systématique, publiée dans Waves in random Media. Cidessous en figure 2, dans le cas d'un spectre décroissant en K-4 comportant toutes les échelles jusqu'à 30λ, nous constatons un excellent accord en co-polarisation avec SSA1, tandis que la méthode des petites perturbations (BF) ne prédit correctement que la diffusion aux grands angles, au contraire de l'approximation de Kirchhoff (HF) qui n'est précise qu'autour de la direction de la réflexion spéculaire.

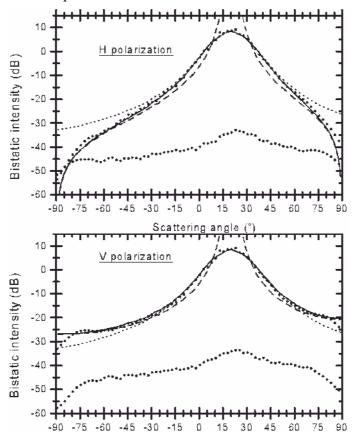
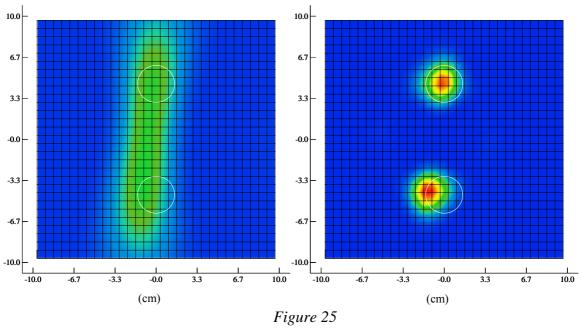



Figure 18

Ce nouveau modèle n'est plus aussi simple que celui qu'il est censé remplacer, car le calcul de la fonction de corrélation de la surface de mer, puis de la transformée de Fourier de sa fonction de structure doivent être menés avec soin. Néanmoins, les performances sont nettement meilleures, comme le montre la figure 3 ci-dessous, où nous avons comparé l'évolution du diagramme de diffusion dans le plan d'incidence en fonction de la fréquence spatiale de coupure.

Le second exemple (figure 9), mesuré dans les mêmes conditions expérimentales que le premier, traite de deux tiges diélectriques ($\epsilon \approx 3$) à section circulaire, dont on reconstitue la permittivité à l'aide de la méthode « hybride » décrite précédemment. A 1 GHz (figure de gauche), la longueur d'onde est 4 fois plus grande que la distance séparant les tiges, et l'algorithme n'a pas pu les séparer. A 4 GHz (figure de droite), la qualité de la reconstruction est bien meilleure. A noter que la tige du bas est légèrement décalée vers la gauche par rapport à la position mesurée. Toutes les équipes ayant travaillé sur ces données ont trouvé le même écart. La diffraction inverse est-elle plus précise que le mètre à ruban ?

VII.2.4. Traitement du signal

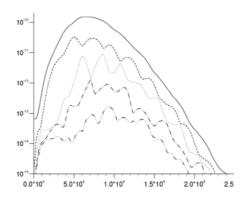
Une des principales motivations des études engagées au cours des dernières années est à terme de proposer des algorithmes robustes de caractérisation d'objets immergés dans un milieu inhomogène aléatoire, tel que le sous-sol. En effet, nos compétences en modélisation de la diffusion par de tels milieux nous prédisposent à l'étude de ce problème, et à ce jour, celui-ci est essentiellement traité par des techniques de traitement du signal car les algorithmes d'inversion sont souvent impuissants. En collaboration avec le L2S, nous avons mis en place une Action Spécifique sur ce sujet, financée par le Département STIC (2002-2004).

Notre contribution ces dernières années fût de mettre en évidence le fort potentiel de la méthode D.O.R.T. (Décomposition de l'Opérateur de Retournement Temporel, proposée en Acoustique par l'équipe de M. Fink au LOA), pour la détection par sondage électromagnétique d'objets enfouis. Cette étude a fait l'objet d'une thèse soutenue en 2001 et sera suivie d'une autre, financée par la DGA (2002-). La méthode D.O.R.T. n'est pas en soi une méthode d'inversion ; elle propose un traitement des données permettant non seulement de recueillir des informations sur le nombre de diffuseurs et sur leur localisation, mais aussi

de synthétiser une onde focalisant de façon sélective sur chaque diffuseur préalablement repéré. Cette dernière propriété est très intéressante pour optimiser le rapport signal à bruit lorsqu'un diffuseur est immergé dans un milieu inhomogène. Ce traitement des données intervient donc avant d'entamer toute procédure de caractérisation ou d'imagerie ; il est destiné à mieux « conditionner » le problème inverse, afin de stabiliser les algorithmes et de fiabiliser le diagnostic. Dans nos études, nous nous sommes focalisés sur l'influence

- de la nature des diffuseurs (taille, composition),
- de la présence d'une interface et de la réduction du nombre d'angles de vue qui en découle,
- de la robustesse vis à vis du bruit engendré par l'environnement (fouillis).


Pour nous affranchir de la contribution de l'interface, nous avons utilisé des pulses très brefs permettant d'isoler son écho. Si l'on considère qu'il est difficile d'engendrer des impulsions de durée inférieure à 1 ns, la méthode ne permet donc pas en l'état actuel de traiter le problème d'objets placés à moins de quelques centimètres d'une surface rugueuse.


Ci-dessous (figures 10-12), nous présentons un exemple modélisant la présence de deux canalisations placées sous une interface plane, dans un milieu contenant un grand nombre de petits diffuseurs, engendrant un rapport signal à bruit de 5dB, soit environ 30% de bruit. Le sondage s'effectue avec un réseau de dix dipôles électriques placés sur une ligne horizontale au-dessus de l'interface. La procédure est la suivante :

pour chaque émission d'un dipôle, les échos sont enregistrés sur les 10 voies (figure 10), supposées ici idéalement découplées. Après filtrage temporel pour éliminer l'écho de l'interface, on forme ainsi une matrice 10x10 dont les éléments sont des fonctions scalaires du temps.

Après transformée de Fourier, on calcule les valeurs propres et les vecteurs propres pour chaque fréquence (figure 11). Nos travaux ont montré que chaque diffuseur « important » signe sa présence par deux valeurs propres dominantes, proportionnelles à sa section efficace. Sur l'exemple proposé, on déduit la présence de deux diffuseurs principaux, le troisième étant 1000 fois moins brillant que le premier et 300 fois moins que le second.

Pour synthétiser une onde focalisant sur un diffuseur, il faut exploiter les propriétés des vecteurs propres. Nous avons démontré que, pour chaque fréquence, les composantes d'un des deux vecteurs propres associés à chaque diffuseur représentent les amplitudes complexes des courants devant alimenter les dipôles pour synthétiser une onde focalisant sur le diffuseur (figure 12).

Echos (temps) TF Matrice (fréquence) -

Valeurs propres (fréquence)

Figure 10

Ci-contre: focalisation sélective sur un objet diffractant plongé dans un milieu diffusant. Carte du module du champ électrique rayonné par les 10 antennes alimentées selon la distribution de courant suggérée par le vecteur propre associé à ce diffuseur. Les petits disques orange ne sont là que pour rappeler la présence du fouillis, en réalité engendré par 8000 petits diffuseurs aléatoirement répartis dans ce domaine de 2m de côté.

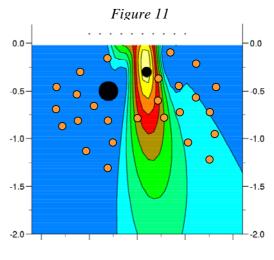


Figure 12

VII.2.5. Perspectives

Aux activités présentes, orientées essentiellement vers l'imagerie micro-onde, car adossées à la chambre anéchoïque du CCRM, vont venir se greffer des applications dans le domaine Optique. En effet, un projet basé sur un dispositif expérimental original en Optique et sur un transfert des techniques d'inversion connues en micro-ondes, a reçu le soutien du Ministère dans le cadre de l'Action Concertée Incitative « Jeunes Chercheurs » (A. Sentenac). Les algorithmes d'inversion que nous développons depuis quelques années devront donc être adaptés à ce nouveau type de données expérimentales. Pour une meilleure prise en compte des caractéristiques du bruit inhérent à la mesure, l'équipe PHYTI participe également au projet (N. Bertaux). L'objectif de cette action est de proposer une alternative à la microscopie Optique classique, avec une bien meilleure résolution, pour toutes les applications potentielles en contrôle non destructif (circuits imprimés par exemple).

La chambre anéchoïque reste bien sûr au cœur de la thématique. La demande, de la part de la communauté internationale, pour continuer de faire évoluer la base de données que nous leur avons proposée, est très forte et encourageante.

VII.3. Compléments/rayonnement/Diffusion de l'information scientifique

- M. Saillard a organisé la session "Scattering and Diffraction" de l'assemblée Générale de l'URSI en 2002 et, avec K. Belkebir, une session au PIERS en 2000.
- K. Belkebir et M. Saillard sont Guest Editors d'une section spéciale de la revue Inverse Problems.
- Projet d'Action Intégrée avec l'Université de Hong –Kong (méthodes d'impédance)
- H. Giovannini est membre du comité de pilotage du RTP Instrument des Systèmes d'Ondes (ISO)
- M. Saillard est membre du comité de pilotage du RTP « STIC et Environnement »
- M. Saillard est membre du comité scientifique du PNTS (INSU)
- PPF en cours « Contrôle non destructif et Imagerie », resp. M. Saillard, Univ. Provence, lab. Fresnel, LMA, IUSTI, LCND.
- GDR Onde : n° 2451, groupe thématique 1 : modélisation (Marc Saillard)
- Action Spécifique : Imagerie à Synthèse d'Ouverture (H. Giovannini)
- Action Spécifique : Détection d'Objets Enfouis (M. Saillard)

VII.4. <u>Doctorants TEM</u>

VII.4.1. Doctorants présents au 01 Septembre 02

Nom, Prénom	Date de Naissance	Date d'arrivée dans l'unité	Type de bourse	Direction de thèse	DEA d'origine	date de soutenance
CMIELEWSKI Octavien	21/05/1978	2002	DGA	M. SAILLARD / H. TORTEL	Méthodes Physiques en Télédétection	2005
DUBOIS Anthony	09/12/1978	2002	M.E.N.R.T.	M. SAILLARD / K. BELKEBIR	Optique, Image et Signal	2005

VII.4.2. Thèses soutenues (99-02)

Nom, Prénom	Type de bourse)	Direction de thèse	DEA d'origine	date de soutenance	Devenir professionnel
MICOLAU Gilles	AC	M. SAILLARD	Optique, Image, Signal	01/07/2001	Ens. Supérieur
SORIANO Gabriel	Reg/Entre.	M. SAILLARD	Optique, Image, Signal	01/10/2000	Ens. Supérieur
BONNARD Stéphane	MENRT	M. SAILLARD	OIS	01/09/1999	Ent.

VII.5. TEM: Production scientifique

24 RICL, 7 Proc., 4 CI et 3 Bookch

VII.5.1. Publications dans revues internationales avec comité de lecture

- Saillard M., Vincent P., Micolau G., "Reconstruction of buried objects surrounded by small inhomogeneities", Inverse Problems 16 (2000) 1195-1208
- Bonnard S, Vincent P, Saillard M., « Inverse obstacle scattering for homogeneous dielectric cylinders unsing a boundary finite-element method", IEEE Trans. Ant. Propagat., 48 (2000) 393-400
- Bonnard S., Saillard M., Vincent P., « Improved inverse scattering for dielectric homogeneous cylinders », J. Opt. A: Pure Appl. Opt., 1 (1999) 566-572
- G. Soriano, M. Saillard, "Modelization of the scattering of electromagnetic waves form the ocean surface", Progress in Electromagnetic Research, à paraître en 2002.
- G. Soriano and M. Saillard and C.A. Guerin, "Scattering by two-dimensional rough surfaces: comparison between the Method of Moments, the Kirchhoff and the Small-Slope approximation", Waves in Random Media. vol 12, (janv.2002) pp.63-83.
- A. Sentenac, H. Giovannini, M. Saillard, "Scattering from rough inhomogeneous medi Splitting of surface and volume scattering", J. Opt. Soc. Am A, 19 (2002) pp. 727-736.
- H. Tortel, "Localization and Derivation of an Optimal Sphere for 3D Objects", A paraître dans JEWA, Vol.16, n 6, 771-791, 2002.
- 17 C.A. Guerin, "Scattering by rough surfaces with stable non-Gaussian height distribution", Waves in Random Media, (12), July 2002, p.293-306.
- 16 C.A. Guerin, "A note on the generalized fractal dimensions of a probability measure.", Journ. Math. Phys., december 2001.

- 15 C.A. Guerin, M. Saillard, "Electromagnetic scattering on fractional Brownian surfaces and estimation of the Hurst exponent", Inverse Problems 17 (2001) 365-386.
- 14 K. Belkebir, A.G. Tijhuis, "Modified2 gradient and modified Born method for solving a two-dimensional inverse scattering problem.", Inverse Problems, Vol.17, 1671-1688, 2001.
- A.G. Tihjius, K. Belkebir, A.C.S. Litman, B.P. de Hon, "Multiple-frequency distorted-wave Born apProch to 2D inverse profiling.", Inverse Problems, Vol.17, pp. 1635-1644, 2001.
- M. Saillard, A. Sentenac, "Rigourous solution for electromagnetic scattering from rough surfaces.", Waves in Random Media, 11 (2001) 103-137.
- G. Soriano, M. Saillard, "Scattering of electromagnetic waves from two-dimensional rough surfaces with impedance approximation", JOSA, 2001, Vol. 18, n 1, 124-133.
- 10 K. Belkebir, M. Saillard, "Special section on: Testing inversion algorithms against experimental data.", Inverse Problems, Vol. 17, pp. 1565-1571, 2001.
- A.G. Tijhuis, K. Belkebir, A.C.S. Litman, B.P. de Hon, "Theoretical and computational aspects of two-dimensional inverse profiling.", IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 6, pp. 1316-1330, 2001.
- P. Sabouroux et J.L. Pere, "Transmission optique en espace libre d'un signal hyperfréquence analogique", European Test and Telemetry Conference, Proceedings pp 229-232, Marseille, juin 2001.
- 7 K. Belkebir, S. Bonnard, F. Pezin, P. Sabouroux, M. Saillard, "Validation of 2D inverse scattering algorithms from multi-frequency experimental data", JEMWA, 2000, 14, p.1639-1670.
- 6 C.A. Guerin, "Wavelet analysis and covariance structure of some classes of nonstationary processes", J. Fourier Anal. Appl. 6(4), 2000.

- H. Tortel, G. Micolau, M. Saillard, "Decomposition of the time reversal operator for electromagnetic scattering", J. of Electr. Waves and Appl., n 13, p.687-719, 1999.
- O. Calvo-Perez, A. Sentenac and J.-J. Greffet, "Scattering by randomly rough dielectric surfaces and rough dielectric films: Influence of the height distribution", Journal of Optics A: Pure and Applied Optics, Special issue on Electromagnetic Optics 1, 560-565.
- Calvo-Pérez O., Greffet J. J., Sentenac A., "Scattering by randomly rough dielectric surfaces and rough dielectric films: Influence of the height distribution", Journal of Optical A: Pure and Applied Optics Special issue of in electromagnetic optics, Vol.1, No., pp.560-565, 1999.
- O. Calvo-Pérez, A. Sentenac, J. J. Greffet,, "Light scattering by a two-dimensional, rough penetrable medium: A mean-field theory", Radio Science, Vol.34, No., pp.311-335, 1999.
- N. Destouches, M. Lequime and H. Giovannini and C.A. Guerin, "Determination of the phase of the diffracted field in the optical domain. Application to the reconstruction of surface profiles", Opt. Comm. vol. 198, pp. 233-239 (2001).

VII.5.2. Communications avec actes

- 7 H. Tortel, M. Saillard, "Shape Reconstruction of 3D perfectly conducting object", URSI General Assembly, 2002, (Maastricht).
- G. Micolau, H. Tortel, M. Saillard, "Decomposition of the time reversal operator (DORT) method as applied to detection of buried objects", Proceedings of the PSIP 2001 Conference (Physics in Signal & Image Processing), pp.69-74.
- 5 C.A. Guerin, M. Saillard, "On estimating the Hurst exponent of a fractional Brownian surface from scattering data surfaces.", Proceedings of the PSIP 2001 Conference (Physics in Signal & Image Processing), pp.105-110.
- 4 K. Belkebir, "Reconstruction of two-dimensional complex permittivity distribution from real data", Workshop on microwave imaging methods and techniques, Paris, 2 Octobre 2000.

- G. Gazoty, R. Deleuil, "Diffraction d'une onde électromagnétique plane par un biréseau métallique plan formé de cavités hémisphéroïdales", C.R. Acad. Sc. Paris, Série 2B, tome 327, n 5, mai 1999, p. 555-558.
- G. Gazoty, R. Deleuil, P. Sabouroux, "Expérimentation microonde sur la diffraction par des biréseaux métalliques de cavités hémisphéroïdales", C. R. Acad. Sci. Paris, t. 327, Série II b, p. 1419-1422, 1999.
- O. Calvo-Perez, A. Sentenac and J-J. Greffet, "Light scattering by a two-dimensional, rough penetrable medium: A mean-field theory", Radio Science, 34, 311-335.

VII.5.3. Conférences invitées

- M. Saillard, "Scattering from rough surfaces: application to remote sensing", Invited conference, European Space Agency, ESTEC, Noordwijk, The Netherlands, April 12th, 2002.
- G. Soriano, M. Saillard, "An improved bistatic two-scale model for ocean scattering", URSI General assembly, Maastricht, Aug. 2002.
- 2 C.H. Chan, M. Xia, L. Tsang, M. Saillard, G. Soriano, "Recent developments of 3D modeling of random rough surfaces", URSI General assembly, Maastricht, Aug. 2002.
- M. Saillard, P. Vincent, S. Bonnard, "Reconstruction of homogeneous objects", URSI, Kleinheubach (All.), 25-29 Sept. 2000.

VII.5.4. Chapitres dans ouvrages

3	2001	Maystre D., Saillard M., Tayeb G.	Special Methods of Diffraction	Chapter 1.5.6 in Scattering, Editors P. Sabatier and E.R. Pike, Academic Press, London, 2001 (ISBN: 0126137609)
2	2001	C.A. Guerin, M. Saillard, M. Holschneider	Scattering on Multiscale rough surfaces.	Patrick Sebbah editor, Waves and Imaging in Complex Media, Kluwer Academics, Congrès, 2001, PP.339-346

1 1999 C.A. Guerin, M. Holschneider

Wavelet dimensions and time evolution

J. Van den Berg editor, Wavelets in Physics, Cambridge University Press, 1999

VII.6. TEM: Bilan financier

VII.6.1. Contrats de recherche référencés R3

ANNEE	Contrat	Compte N°	Equipe	Resp.	Montant HT en EUROS	TOTAL par année	Solde au 17.10.02
1999	ONERA	4119 R3	TEM	Saillard	19 815.20	19 815.20	11 329.00
2000	ONERA	4119 R3	TEM	Saillard	19 815.20	19 815.20	11 329.00
2000	St Gobain	4130 R3	TEM	Saillard/Sentenac	15000		
	Total TEM						11 329.00
	MOYENNE SUR 4 ans						

VII.6.2. Contrats de recherche référencés C

ANNEE	Contrat	Fact n°	Equipe	Chercheur	Date	Montant HT en EUROS	TOTAL par année	Solde au 17.10.02
2001	DGA/DASSAULT	532 C	TEM	Saillard	07/12/2000	6 100.00	6 100.00	6 100.00
	TOTA	L Equipe T	6 100.00		6 100.00			
		Moyenne	1 525.00					

VII.6.3. Opérations spécifiques CNRS

ANNEE	Origine	CDP	Equipe	Chercheur	Montant HT en EUROS	TOTAL par année
1999	CNRS Prog PNTS	356 153	TEM	Sentenac	4 177.41	
2000	CNRS Prog PNTS	356153	TEM/CLARTE	Sentenac	6 860.21	11 037.61
2001	CNRS Prog PNTS		TEM	Guerain	13 900.00	
2002	CNRS Moyens Spécifiques	0MS 153	TEM	Giovannini	28 000.00	28 000.00
2002	ACI JE Ministère		TEM	Sentenac	45 000.00	
		97 937.00				
	Mo	24 484.00				

EQUIPE RCMO : EFFECTIFS

Nom, Prénom	Date de naissance	Corps, Grade	Section CNU ou CNRS	HDR	Date d'arrivée dans l'unité	Etablissement d'affectation	% affectation
AMRA Claude	29/10/59	DR2	section 8	X	janv. 86	C.N.R.S.	0.15
LEMARCHAND Fabien	févr-72	MC	63		sept. 00	E.N.S.P.M.	1.00
LEMARQUIS Frédéric	sept-67	MC	63		sept. 98	E.N.S.P.M.	1.00
LEQUIME Michel	févr-52	PR2	63	X	oct. 97	E.N.S.P.M.	1.00
TORCHIO Philippe	juin-64	MC	63		mars-97	UIII (I.U.T.)	1.00
ALBRAND Gérard	25/05/1943	IE2	08			C.N.R.S.	1.00
KOC Cihan	10/3/79	TCN	08		2001	C.N.R.S.	1.00
MARCHAND Gérard	14/1/43	AI	08			C.N.R.S.	1.00
ROUSSEL Luc	25/7/63	IE	08		2000	C.N.R.S.	1.00
CATHELINAUD Michel	13/11/65	IE2	08			C.N.R.S.	1.00
SPINELLI Jean-Pierre	19/2/60	T	BAP VII		2002	E.N.S.P.M /Contractuel	0.33

Soit, en effectifs temps plein (hors administration): 9,48

dont 0,15 chercheur CNRS,4 MCF/PR,

et 1,15 HDR

VIII - EQUIPE RCMO: BILAN SCIENTIFIQUE

VIII.1.Introduction

Les travaux menés par l'équipe RCMO (*Recherche en matériaux, technologies et composants de Couches Minces Optiques*) durant ce quadriennal 1999-2002 ont eu pour principaux objectifs d'une part d'améliorer les moyens expérimentaux et technologiques que nous utilisons lors de la réalisation d'empilements multicouches complexes (§ 2 et 3), et d'autre part d'explorer des nouveaux concepts de filtrage optique (§ 4 à 7).

VIII.2. Développement de nos moyens de fabrication

VIII.2.1. Acquisition d'un nouveau bâti de technologie DIBS

La technologie DIBS (*Dual Ion Beam Sputtering*) correspond à une configuration dans laquelle les matériaux à évaporer sont préparés sous forme de disques plans, éventuellement de grand diamètre, appelés cibles et soumis à un faisceau d'ions énergétiques à l'intérieur d'un bâti où règne à l'origine un vide secondaire. La matière ainsi pulvérisée (d'où l'emploi du terme *Sputtering*) se redépose en film mince sur les pièces optiques à traiter, et la couche obtenue est compactée en cours de dépôt grâce à la mise en œuvre d'un deuxième faisceau d'ions, dit d'assistance et dirigé vers ces pièces optiques (d'où l'appellation *Dual Ion Beam*).

Comme toute méthode de dépôt qui met en œuvre une assistance ionique (IAD, *Ion Assistance Deposition*), la technologie DIBS permet d'obtenir des couches minces de grande qualité, c'est-à-dire denses (sans porosité), d'indice de réfraction élevé, et présentant à la fois un bon comportement mécanique (dureté, adhérence) et une faible absorption optique. Mais seule la technique de pulvérisation permet de réaliser des empilements à grand nombre de couches (typiquement de l'ordre de la centaine) sans rupture du vide.

Photo 1a – Bâti DIBS, Armoires de Contrôle et Système de Pilotage

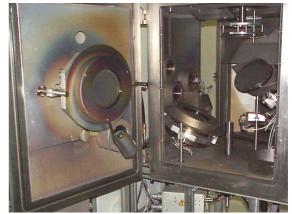


Photo 1b – Intérieur du Bâti DIBS (Canons à ions, Porte-cible)

La machine dont nous avons fait l'acquisition grâce notamment à l'emploi de fonds FEDER [cf. Photos 1a et 1b] est équipée de 3 cibles (Si, SiO₂, Ta₂O₅) commutables en rotation et permet de couvrir l'ensemble de nos besoins actuels de développement en composants à très hautes performances, dans les domaines du visible et du proche infrarouge

(y compris les fonctions de filtrage en bande étroite utilisées en télécommunications optiques).

La réalisation d'empilements aussi complexes nécessite bien évidemment que la procédure de dépôt bénéficie d'une automatisation importante (pilotage et régulation des canons à ions avec contrôle optique in situ de l'épaisseur optique effectivement déposée, commutation automatique des cibles, avec en outre pilotage et régulation du débit des gaz tampons utilisés au cours du process, comme l'oxygène ou l'argon).

Ce bâti DIBS est aujourd'hui totalement opérationnel, et devrait nous permettre de répondre à des demandes toujours plus exigeantes (par exemple, la réalisation de filtres à bande étroite utilisés en faisceau ouvert et qui nécessitent donc l'emploi de cavités d'indice élevé, que l'on peut réaliser à l'aide de matériaux tels que le Silicium).

VIII.2.2. Modernisation de nos bâtis IAD et EBD

De manière à conserver une communauté d'approche et de performances entre ce nouveau bâti DIBS et les trois autres bâtis déjà utilisés dans notre équipe [1 bâti de technologie IAD de diagonale 750 mm, 1 bâti de technologie EBD (*Electron Beam Deposition*) de diagonale 600 mm et 1 bâti de technologie IP (*Ion Platting*) de diagonale 800 mm], nous avons décidé de mener en parallèle une modernisation de 2 de ces machines, au travers :

- de la mise en place d'une automatisation complète de notre bâti IAD [rappelons que, dans ce type de machine, l'évaporation des matériaux met en œuvre des méthodes classiques (creusets remplis de composés en poudre ou granulats et soumis au bombardement d'électrons émis par des canons dédiés],
- de l'installation, sur les bâtis IAD et EBD (ce dernier étant donc dépourvu d'assistance ionique), de contrôles optiques performants couvrant le domaine 400 nm – 1700 nm, et identiques dans leur principe à celui déjà installé sur le bâti DIBS.

L'ensemble de cette remise à hauteur est aujourd'hui entièrement achevée.

VIII.2.3. Réalisation d'un Bâti IBS Billes

La composante MAP2-Diffusion de l'Institut FRESNEL avait souhaité pouvoir disposer d'une machine qui soit adaptée au traitement de billes diélectriques, traitement dont l'homogénéité soit garantie au travers d'une mise en mouvement permanent (rotation sur ellemême) de chacune de ces billes. Ceci peut être obtenu en disposant l'ensemble des billes à traiter à l'intérieur d'un récipient excité par un pot vibrant que l'on place en partie basse du bâti : ceci impose naturellement de localiser les sources de matériaux à évaporer en partie haute de ce même bâti, d'avoir donc recours à des cibles solides, et par conséquent à une technique de dépôt de type IBS (mais cette fois-ci sans assistance).

Photo 2a - Bâti IBS fermé

Photo 2b – Bâti IBS ouvert

Cette machine spéciale [cf. Photos 2a et 2b] a été mise au point par notre équipe à partir d'un bâti VEECO initialement dédié à la réalisation de traitements infrarouges, et qui a été équipé d'une pompe à vide de type thermo-moléculaire, d'un canon à ions de pulvérisation, d'un support de cibles commutables manuellement (Silicium, Aluminium, Ta_2O_5) et d'un pot vibrant.

Des traitements monocouches (Aluminium, Ta_2O_5) ont été réalisés sur des billes de diamètre 100 microns et 30 microns, et ont permis de montrer la faisabilité expérimentale du procédé, l'optimisation de la procédure de dépôt étant actuellement en cours.

VIII.3. <u>Etudes technologiques</u>

VIII.3.1. Empilements métaux-diélectriques

Les métaux sont utilisés en couches minces soit pour leurs propriétés de réflexion achromatique, soit pour leurs propriétés d'absorption. Associés avec des matériaux diélectriques, ils permettent d'obtenir, de manière relativement aisée, des composants de filtrage optique qui se seraient avérés difficiles, voire impossibles à réaliser avec les seuls matériaux diélectriques : on peut citer en particulier les filtres passe bande à large domaine de réjection ou les absorbeurs de lumière.

A chaque fois, il est nécessaire d'avoir une connaissance précise de l'indice de réfraction et du coefficient d'absorption des métaux utilisés. De plus, les couches métalliques requises pouvant avoir des épaisseurs très faibles, l'indice du métal doit être déterminé en fonction de l'épaisseur afin de tenir compte de l'évolution de la compacité de la couche en début de croissance ou la présence d'éventuels phénomènes d'oxydation. Dans le cadre d'études menées pour le CNES sur des absorbeurs de lumière, nous avons mis au point des méthodes de

caractérisation de l'indice de couches métalliques, opaques ou semi-transparentes, basées sur des mesures spectrales de transmission et réflexion. Ces méthodes ont été utilisées sur le Nickel et le Chrome, deux métaux bien adaptés à la réalisation de tels absorbeurs.

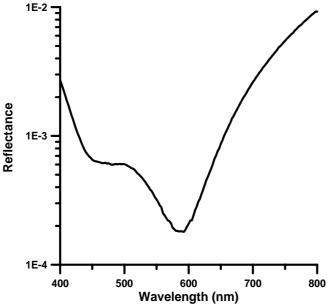


Figure 3 – Facteur de réflexion d'un absorbeur Nickel-Cryolithe

Nous avons ensuite montré la faisabilité de traitements absorbeurs large bande couvrant le domaine visible avec un taux d'absorption supérieur à 99.9 % (cf. courbe présentée à la Figure 3). Les dépôts correspondants ayant été dans ce cas réalisés par évaporation classique (EBD) sans assistance ionique, les caractéristiques mécaniques de ces traitements ne sont pas compatibles avec leur utilisation en ambiance spatiale. Notre objectif actuel vise donc à réaliser le même type de composant, mais en utilisant une technologie de dépôt assistée, et nous avons sélectionné dans ce cas l'*Ion Plating* (IP). Les premiers essais que nous avons réalisés nous ont déjà permis de valider la tenue mécanique de ces traitements. On cherchera également à élargir la bande spectrale d'efficacité et à obtenir des absorbeurs adaptés au domaine de l'infrarouge thermique.

Certains composants, intégrant cette fonction d'absorbeur de lumière, ont été réalisés dans le cadre du projet PHARAO (horloge atomique embarquée).

VIII.3.2. Domaine IR

Les activités de dépôt pour l'infrarouge thermique sont actuellement liées à la réalisation, pour l'Observatoire de Paris Meudon, de masques de phase à 4 quadrants devant fonctionner en transmission aux longueurs d'onde de 5, 11, et 15 µm (cf. Figure 4). Le saut de phase peut être obtenu par gravure du substrat ou par dépôt d'une couche de même matériau que celui-ci. La séparation des quadrants est obtenue par lift-off. Le composant est traité antireflet sur ses deux faces.

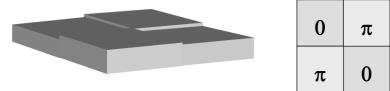


Figure 4 – Structure du Masque de Phase

Les matériaux envisagés pour cette application sont YF₃, ZnSe et Ge. Ces matériaux ont déjà été utilisés lors d'études antérieures demandées par le CNES pour des traitements optiques dans la bande 3-15 µm. A l'époque, les dépôts avaient été réalisés sans assistance ionique et présentaient donc des caractéristiques de tenue mécanique moyenne. Notre objectif consiste donc aujourd'hui à mettre au point le dépôt de ces mêmes matériaux dans une technologie assistée (Ion Assisted Deposition), sachant que si ces techniques sont bien connues pour les dépôts d'oxydes, elles le sont bien moins pour les matériaux qui nous intéressent. En particulier, le bombardement ionique de couches de fluorure se traduit souvent par une sous stœchiométrie en fluor qui entraîne une hausse des niveaux d'absorption. Un compromis, fonction de la puissance de l'assistance, doit alors être trouvé entre performances optiques et propriétés mécaniques.

La mise au point de ces matériaux dans ce type de technologie permettra d'envisager par la suite la réalisation de traitements complexes pour l'infrarouge, compatibles avec leur emploi en ambiance spatiale.

VIII.3.3. Domaine UV

La mise en place de cette activité de recherche visait à étendre le savoir-faire de notre équipe au domaine de l'ultraviolet proche (typiquement entre 200 et 350 nm). Les travaux entrepris ont été réalisés dans le cadre d'un projet européen de type TMR (Training Mobility Research) intitulé Towards a Storage Ring Free Electron Laser Source at 200 nm et qui visait à équiper un Laser à Electrons Libres (LEL) de composants optiques de hautes performances fonctionnant dans ce domaine de longueur d'ondes. Nous avons en particulier réalisé des miroirs de type R_{max} centrés à 250 nm, en utilisant des traitements de surface faiblement absorbants et très résistants à l'environnement ainsi qu'aux flux particulaires caractéristiques d'une application LEL. Le couple de matériaux sélectionné était HfO₂/SiO₂ et la technologie de fabrication retenue une technologie assistée de type Ion Plating. Nous avons donc adapté notre bâti d'évaporation IP-750 et son contrôle optique pour une utilisation dans l'UV, déterminé les constantes optiques n et k des matériaux en couches minces (à partir de monocouches), produit plusieurs séries de miroirs centrés à 300 et 250 nm en améliorant le processus de fabrication, étudié l'influence de recuits thermiques, et analysé les propriétés micro-structurales des couches obtenues par diffraction de rayons X, microscopie à force atomique et microscopie électronique à balayage. La Figure 5 placée ci-après présente la Réflexion (R), la Transmission (T) et les Pertes (L) mesurées dans la gamme de longueur d'onde 185-600 nm. Il s'agit ici d'un miroir centré à 250 nm, constitué de 23 couches alternées de design $(HL)^{11}/H$, d'épaisseur géométrique totale 1,1 µm, et ayant subi un recuit thermique à 400° C pendant 4 heures. La réflexion optimale est obtenue dans la gamme 230-280 nm, avec une valeur supérieure à 99 % autour de 250 nm (tandis que les pertes restent inférieures à 1 % dans cette même gamme).

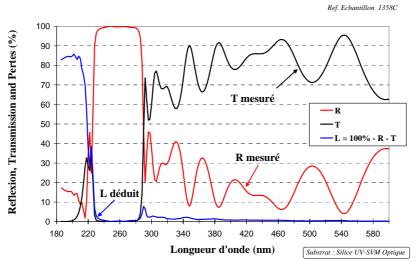


Figure 5 – Caractéristiques optiques d'un miroir UV centré à 250 nm

VIII.3.4. Filtres spatialement variables

Un filtre passe bande est dit *spatialement variable* lorsque la longueur d'onde de centrage évolue en fonction de l'endroit choisi à sa surface. Ce type de composant, lorsqu'il est placé devant un détecteur matriciel, permet de concevoir un spectromètre dont l'encombrement et le poids sont notablement réduits, ce qui est particulièrement recherché dans le cas des applications spatiales.

La réalisation de ce type de composant passe par une maîtrise complète de l'uniformité du dépôt dans l'enceinte d'évaporation. Ceci peut être obtenu à l'aide d'un masque disposé devant la pièce à traiter, la forme de ce masque et le mouvement de la pièce à traiter permettant alors de modifier la répartition spatiale des épaisseurs déposées et donc les propriétés optiques du composant.

Actuellement, nous étudions la faisabilité de ce type de composant pour le compte de l'Observatoire de Paris Meudon. Les performances demandées visent à obtenir une variation du centrage du filtre d'un facteur 2 sur une longueur de 25 mm, la bande passante typique étant de 5 nm et le domaine de fonctionnement correspondant à l'infrarouge proche. A plus long terme, les besoins exprimés exigeront des variations beaucoup plus importantes, d'un facteur 2 à 3 sur une distance réduite de 5 mm.

Parallèlement au travail de réalisation, des moyens de caractérisation spécifiques sont mis en place pour la mesure de l'évolution spatiale des propriétés optiques.

De façon plus générale, la maîtrise de l'uniformité des dépôts est un sujet important, tant pour obtenir des filtres variables que des filtres parfaitement uniformes. C'est pourquoi une thèse débute actuellement sur ce sujet dans notre équipe.

VIII.4. Filtres accordables

VIII.4.1. Généralités

On désigne ici par filtres accordables des empilements multicouches dont les caractéristiques de transmission spectrale peuvent être modifiées par l'application d'une tension de commande. L'obtention d'une telle agilité spectrale est de première importance dans le domaine des télécommunications optiques (en particulier pour les réseaux de troisième génération de type métropolitain), mais les secteurs d'application potentiels d'une telle technologie sont extrêmement diversifiés (habitat, protection oculaire, ...).

Nos recherches ont débuté par une analyse système de ce concept, ce qui nous a conduit à identifier deux modes possibles d'action, à savoir :

- un **mode direct**, qui utilise une modification directe de l'épaisseur optique des cavités du filtre interférentiel à bande étroite, en particulier sous l'action d'un champ électrique (effets piézoélectrique et électro-optique),
- un **mode indirect**, dans lequel cette même modification de l'épaisseur optique est induite par une déformation mécanique du substrat de ce filtre (qui peut être obtenue à nouveau sous l'action d'un champ électrique [substrat piézoélectrique], mais aussi par application directe d'une contrainte transverse).

Nous avons également analysé d'un point de vue théorique la relation qui existe entre la variation relative de la longueur d'onde centrale λ d'un filtre à bande étroite et la variation relative de l'épaisseur optique ne des cavités résonantes qui le constituent. Nous avons montré que cette relation était de la forme :

$$\frac{\Delta(ne)}{ne} = \kappa \frac{\Delta \lambda}{\lambda}$$

où κ est un facteur numérique inférieur à 1 dont la valeur est fonction de l'ordre d'interférences dans la cavité et des déphasages à la réflexion sur les miroirs qui la délimitent.

VIII.4.2. Dépôt de couches minces de Ta₂O₅ piézoélectriques

L'objectif de cette action de recherche consistait à obtenir des couches minces actives, c'est-à-dire utilisables dans le mode direct d'accordabilité défini au paragraphe précédent. Le recours à la piézoélectricité nous a paru le plus simple de mise en œuvre (les effets optiques obtenus ne dépendent pas de l'état de polarisation de la lumière), tandis que le pentoxyde de tantale constituait un matériau dont les conditions classiques de dépôt étaient bien maîtrisées

et dont les propriétés optiques étaient en accord avec celles exigées dans le multiplexage dense en longueur d'onde (DWDM, *Dense Wavelength Division Multiplexing*).

Nous avons donc montré que des couches minces de Ta₂O₅ de type structuré (c'est-à-dire où coexistent des phases organisées de type hexagonal et orthorhombique) pouvaient être obtenues en technologie EBD lorsque la température du substrat en cours de dépôt était supérieure à 450°C, mais que l'activité piézoélectrique recherchée était conditionnée par la présence majoritaire d'une phase orthorhombique orientée [2 0 0]. L'obtention d'une telle phase nécessite que le substrat soit porté à une température proche de 620°C, et dans ce cas la piézoélectricité nette de la couche avoisine les 10 pm/V.

L'identification d'un tel mécanisme a été rendue possible par l'emploi simultané d'un diffractomètre à rayons X (collaboration avec le laboratoire TECSEN), d'un microscope électronique à balayage (collaboration avec le laboratoire CP2M) et d'un interféromètre à fibre optique de type EFPI (*Extrinsic Fabry Perot Interferometer*) développé dans notre équipe et dont la résolution en déplacement était meilleure que le picomètre.

Les Photographies 6a et 6b placées ci-après permettent de mieux visualiser la structure microscopique d'une couche piézoélectrique déposée sur un substrat de silice à 620°C et l'allure du spectre de diffraction X associé à cette phase orthorhombique à orientation préférentielle [2 0 0].

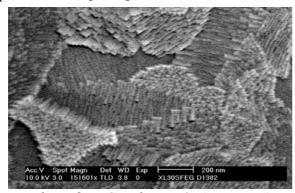
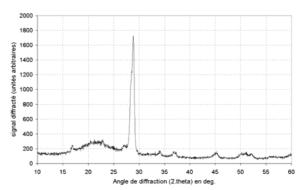



Photo 6a – Couche Ta₂O₅ (vue MEB)

Photo 6b – Spectre de diffraction X

Malgré ces résultats réellement concluants et entièrement nouveaux, la réalisation, à l'aide de ce type de technologie, d'un filtre à bande étroite accordable à usage industriel, reste à l'heure actuelle problématique, tant il est vrai :

- que le déplacement de sa longueur d'onde de centrage ne saurait excéder 0,12 nm (pour une tension de pilotage égale à la tension de claquage),
- et que les taux de diffusion mesurés sur ce type de couches poly-cristallines sont 250 fois plus importants que les niveaux habituellement obtenus en technologie IAD et nécessaires à la réalisation de filtres à bande étroite de hautes performances.

VIII.4.3. Accordabilité par contrainte mécanique transverse

Comme nous l'avons indiqué au paragraphe 4.1, un mode indirect de pilotage de cette accordabilité peut être envisagé : il consiste à agir sur les dimensions transverses du substrat d'un filtre à bande étroite et à transférer une partie de cette déformation au spacer du filtre interférentiel par simple application des lois de l'élasticité.

Supposons pour fixer les idées que le substrat soit de section carrée et soumis à une contrainte transverse unidirectionnelle comme indiqué sur le schéma de principe disposé ciaprès.

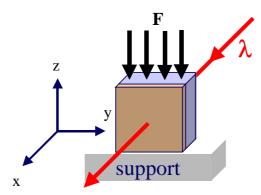


Figure 7 – Schéma de principe

Sous l'action de la force F, le substrat se contracte mécaniquement dans la direction z tandis qu'il se dilate légèrement dans la direction y, en accord avec les lois de l'élasticité (coefficient de Poisson ν_s). Ces déformations se transmettent à l'empilement multicouches, et induisent à la fois une augmentation de l'épaisseur e de la cavité (effet prépondérant) et une légère diminution de son indice de réfraction par effet élasto-optique (effet annexe).

Nous avons effectué une modélisation théorique de cet effet en assimilant l'empilement alterné de couches haut et bas indice que constitue le filtre interférentiel à une couche homogène unique d'indice équivalent n, et établi, pour le décalage spectral de la longueur d'onde centrale d'un filtre bande étroite, la loi de comportement linéaire indiquée ci-dessous :

$$\frac{\Delta \lambda}{\lambda} = \frac{1 - v_s}{1 - v_f} \left\{ v_f + \frac{n^2}{2} \left[(1 - v_f) p_{12} - v_f p_{11} \right] \right\} \cdot \frac{E_f}{E_s} \frac{F}{S}$$

où ν_f (respectivement ν_s) désigne le coefficient de Poisson de cette couche homogène unique (respectivement du substrat), p_{12} et p_{11} les coefficients décrivant son comportement élasto-optique, E_f (respectivement E_s) son module d'Young (respectivement celui du substrat), F la force appliquée et S la surface latérale du substrat.

Nous avons vérifié expérimentalement la validité d'une telle approche et montré que la longueur d'onde centrale d'un filtre DWDM de type industriel était effectivement modifiée par l'application sur son substrat d'une contrainte transverse, la sensibilité obtenue étant de l'ordre de 4,2 pm/N, le décalage mesuré approchant le nanomètre lorsque la contrainte appliquée atteignait 170 MPa (ce qui correspond à une déformation du substrat de 2,5 ‰ et à environ 20% de sa contrainte en rupture).

Nous avons également proposé des modes pratiques de mise en œuvre d'un tel concept, dans lesquels la déformation mécanique du substrat est obtenu à l'aide d'actionneurs piézoélectriques.

VIII.5. Filtres à cavité substrat

VIII.5.1. Introduction

Le lancement de cette nouvelle thématique de recherche trouve son origine dans l'analyse critique des résultats expérimentaux que nous avons présentés au paragraphe 4.2. En effet, lorsque l'on évapore sur un substrat amorphe des matériaux qui présentent à l'état massif des propriétés piézoélectriques ou électro-optiques, les couches minces structurées que nous avons pu obtenir s'avèrent être poly-cristallines, et présentent donc à la fois une activité réduite par rapport à celle des composés de départ et un niveau de diffusion incompatible avec les pertes d'insertion typiques demandées à un composant de filtrage.

Une approche alternative consisterait donc à utiliser des lames ultra-fines de matériaux massifs (typiquement entre 30 et 150 microns) et à déposer sur leurs deux faces des empilements diélectriques de type réfléchissant. Cette même démarche pourrait être également utilisée pour réaliser des filtres passifs de type DWDM, avec comme principaux avantages de réduire les pertes par absorption ou diffusion et de diminuer le nombre de couches nécessaires à l'obtention d'une largeur de bande inférieure au nanomètre.

Dans une telle configuration, la cavité résonante constitue en même temps le substrat des empilements multicouches réfléchissants, de sorte que nous avons choisi de désigner de tels composants sous l'appellation générique de filtres à cavité substrat.

VIII.5.2. Filtres passifs

Dans un premier temps, nous avons cherché à démontrer que les contraintes mécaniques induites par le dépôt d'un empilement de couches minces (par exemple un miroir M5 centré à 1550 nm) sur l'une des faces d'une cavité substrat (ici, une lame de silice de 108,7 microns d'épaisseur) n'étaient pas de nature à provoquer sa rupture.

Nous avons ensuite vérifié que le profil spectral effectif d'un tel filtre (M5/lame silice/M5) était en accord avec le résultat de nos modélisations (largeur totale à mi-hauteur mesurée de 0,79 nm pour 0,74 nm calculé, transmission maximale de l'ordre de 99,8% - cf. Figure 8).

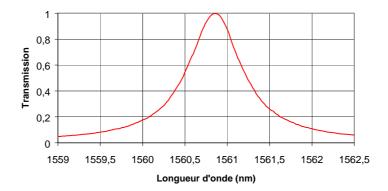


Figure 8 – Transmission spectrale mesurée d'un filtre simple à cavité substrat

De tels filtres à cavité substrat ont principalement deux inconvénients, à savoir :

- la faible valeur de leur intervalle spectral libre (typiquement 8 nm dans notre cas), ce qui nécessite l'emploi de filtres additionnels de blocage de manière à garantir une réjection convenable dans la totalité de la Bande C,
- un profil de type Lorentzien, l'obtention de profils plus carrés nécessitant à l'évidence la mise en cascade de plusieurs cavités.

Nous avons cherché à donner une solution unique à ces deux problèmes en associant de manière cohérente deux filtres à cavité substrat d'épaisseurs différentes (108,7 et 146,0 microns), dont les fonctions de transmission coïncident au niveau de l'un seul de leurs maxima (ce qui va à la fois dans le sens de la modification de forme recherchée et dans l'obtention de taux de réjection meilleurs que 15 dB dans l'ensemble du domaine spectral envisagé).

Les courbes expérimentales disposées à la Figure 9 montrent le profil spectral obtenu lorsque la couche d'air interstitielle séparant les deux cavités est de l'ordre de 30 microns.

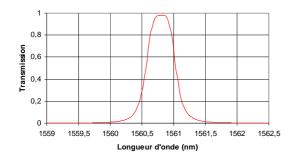


Figure 9a – Transmission spectrale (Echelle linéaire, au voisinage de 1561 nm)

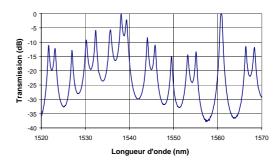
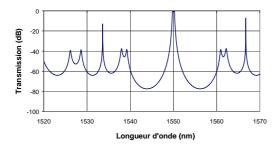



Figure 9b – Transmission spectrale (en dB, sur la totalité de la Bande C)

On constate à la fois la très grande qualité du filtre ainsi constitué (largeur totale à mihauteur de l'ordre de 0,5 nm, pertes d'insertion inférieures à 0,1 dB, réjection dans les pieds meilleure que 35 dB) et la persistance de remontées de transmission trop importantes dans la Bande C. Ces résultats encourageants nous ont incité à lancer le développement d'un filtre à 3 cavités substrats couplées (48, 67 et 75 microns), munies de miroirs M7 et d'un filtre de blocage à faible nombre de couches de type M5/4B/M5. Les performances attendues d'un tel filtre en configuration non bloquée et bloquée sont présentées à la Figure 10.

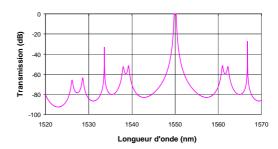


Figure 10a – Configuration non bloquée

Figure 10b – Configuration bloquée

Si les résultats effectivement obtenus sont à la hauteur de nos attentes, nous entamerons alors une étude technologique visant à assembler de manière monolithique ces différentes cavités par collage ou adhérence moléculaire.

VIII.5.3. Filtres actifs

Une fois validée la procédure de fabrication de ces filtres à cavité substrat, nous avons entrepris (ce qui constituait en fait l'objectif initial de notre démarche) de l'appliquer à une lame mince réalisée dans un matériau actif. Nous avons sélectionné, pour des raisons de simplicité d'approvisionnement, le Niobate de Lithium et réalisé deux expérimentations séparées :

- la première visait à vérifier que les performances optiques d'un filtre potentiellement actif étaient comparables à celles d'un filtre passif, dans une configuration d'utilisation réaliste (c'est-à-dire entre deux collimateurs à fibre optique monomode dont les *waist* soient confondus et localisés sur le filtre); c'est ce qu'illustre la Figure 11a, dans le cas d'une cavité substrat de 100 microns d'épaisseur (profil théorique en grisé, profil mesuré en noir).
- la seconde visait à valider le mode de pilotage d'un tel filtre actif, en déposant à sa surface des électrodes d'ITO qui rendent possibles l'application d'un champ électrique longitudinal élevé (typiquement 5.10⁶ V/m), proche du champ de claquage à l'intérieur d'un tel matériau ; la Figure 11b montre les décalages de la fonction de transmission de cette cavité active (± 80 pm) lorsque la tension de pilotage varie entre 500 et + 500 Volts.

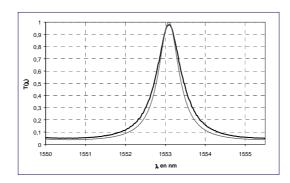


Figure 11a – Transmission spectrale (Cavité substrat en LiNbO₃ – épaisseur 100 μm)

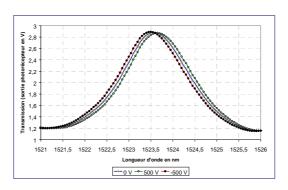


Figure 11b – Accordabilité spectrale (Cavité substrat en LiNbO₃ – électrodes ITO)

Ces résultats, quoique très attractifs, ne correspondent pas à des plages d'accordabilité suffisantes.

Aussi, pour remédier à ce problème, avons-nous envisagé deux évolutions importantes de notre design de base, à savoir :

- Le remplacement du Niobate de Lithium par du **Titanate de Baryum**, matériau dont l'un des coefficients électro-optiques est plus de 50 fois supérieur à celui mis en œuvre dans la démonstration expérimentale rapportée ci-dessus; toutefois la réalisation d'une cavité substrat en BaTiO₃ est délicate, en particulier parce que l'activation du coefficient en question suppose une coupe cristalline non usuelle et que le polissage risque alors d'affecter la polarisation du cristal,
- La mise en série cohérente de deux filtres à cavité substrat, le premier de type passif et le second de type actif, les cavités utilisées étant d'épaisseurs optiques différentes. En l'absence de champ appliqué, la coïncidence des deux peignes de transmission est obtenue à une longueur d'onde λ₁ (cf. Figure 12).

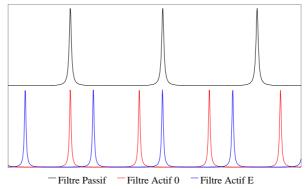


Figure 12 – Accordabilité discrète – Schéma de principe

L'application d'un champ électrique déplace légèrement le peigne de transmission associé à l'élément actif, de sorte que la coïncidence est maintenant obtenue à une longueur d'onde différente, égale à $\lambda_1 + \Delta \lambda_1$ ($\Delta \lambda_1$ désignant l'intervalle spectral libre de la cavité passive). On obtient ainsi une modification brutale de la longueur d'onde centrale du filtre résultant de l'association de ces deux cavités, modification dont l'amplitude est beaucoup plus grande que la plage d'accordabilité de la seule cavité active ; le système obtenu fonctionne donc un peu à la manière d'un vernier et l'on parlera à son sujet d'accordabilité discrète.

VIII.6. Filtres Hybrides

VIII.6.1. Introduction

Des travaux théoriques réalisés par l'un des membres de l'équipe COM (Jean Bittebierre) sur des filtres dits **hybrides**, et constitués par l'association d'un réseau de Bragg sur fibre optique monomode et d'un miroir réfléchissant réalisé par dépôt de couches minces à l'extrémité de cette même fibre, a attiré notre attention sur les potentialités des filtres à modulation continue d'indice.

Ces filtres, que l'on désigne habituellement sous le terme de *rugates* en technologie couches minces, peuvent être réalisés par co-évaporation à l'intérieur d'un même bâti de deux matériaux d'indices de réfraction différents. Cette procédure de fabrication est relativement délicate, mais permet d'obtenir des fonctions de filtrage dites inverses (ou de *notch*), dans lesquelles une ou plusieurs raies étroites sont ainsi efficacement éliminées par réflexion à l'intérieur d'un spectre large bande.

Nous avons donc cherché à associer dans un même composant le concept de filtre à cavité substrat et celui de filtre hybride, la réalisation du réflecteur de Bragg étant dans notre cas obtenu par procédé holographique, grâce à l'utilisation d'un matériau photosensible.

VIII.6.2. Etude théorique

Nous avons transposé l'approche développée par Jean Bittebierre au cas aérien (approximation de la modulation d'indice par la juxtaposition d'un empilement de couches

minces d'indice approprié) et proposé, pour les phénomènes observés, l'interprétation suivante :

- le réflecteur de Bragg (ou miroir holographique) peut être assimilé à un miroir plan **virtuel** dont la distance *d* par rapport à sa face arrière est, pour un coefficient de réflexion donné, une fonction affine de l'épaisseur du miroir holographique,
- le dépôt d'un réflecteur multidiélectrique sur la face arrière de ce miroir holographique crée donc une cavité Fabry-Perot dont l'épaisseur optique est égale à *nd* (*n* désignant l'indice moyen du réseau photo-inscrit),
- lorsque l'une des fréquences de résonance de cette cavité Fabry-Perot coïncide exactement avec la fréquence centrale du réflecteur de Bragg, alors la transmission du filtre hybride à cette même fréquence est maximale (et peut même atteindre 100% si les coefficients de réflexion des deux structures sont identiques),
- le profil spectral particulier du réflecteur de Bragg garantit l'unicité de cette coïncidence, et donc la présence d'un seul pic de transmission dans le domaine spectral utile défini par le réflecteur diélectrique,
- le respect de cette coïncidence rigoureuse nécessite un ajustement fin de la distance d, ce qui peut être obtenu de manière très simple grâce au dépôt préalable d'une couche d'adaptation d'épaisseur appropriée dont l'indice de réfraction est proche de l'indice moyen du réseau photo-inscrit, le dépôt de cette couche constituant une étape préliminaire à la réalisation du miroir diélectrique.

Si la distance *d* est importante (c'est-à-dire de l'ordre de quelques centaines de microns), alors l'intervalle spectral libre du Fabry-Perot correspondant sera faible, de sorte que la largeur totale à mi-hauteur de la résonance sélectionnée par le miroir holographique sera elle aussi très faible, même si les coefficients de réflexion restent modérés. Ces structures hybrides sont donc bien adaptées à la réalisation de filtres à bande très étroite (typiquement entre 10 et 500 pm).

L'efficacité de la réjection hors de la bande de transmission est définie par celle du miroir diélectrique, et peut être améliorée par mise en cascade cohérente de plusieurs cavités. C'est ce qui est représenté à la Figure 13, dans le cas de miroirs de type M7.

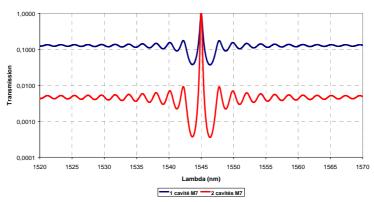


Figure 13 – Transmission spectrale de filtres hybrides simple et double cavité

VIII.6.3. Approche expérimentale

Nous avons fait porter nos efforts dans deux directions :

- le suivi in-situ de l'accord de phase entre réflecteur de Bragg et résonateur Fabry-Perot lors du dépôt de la couche d'adaptation définie au paragraphe précédent; la méthode proposée utilise un enregistrement à haute cadence (typiquement 50 nm/s) de la fonction de transmission spectrale du pseudo-filtre hybride constitué par le réflecteur de Bragg et la face arrière du miroir holographique,
- la caractérisation des propriétés photosensibles de matériaux dont les performances optiques rendent possible leur utilisation comme cavité d'un résonateur Fabry-Perot.

La réalisation des premiers filtres hybrides prototypes devrait intervenir dans le premier trimestre 2003.

VIII.7. Modélisation

VIII.7.1. Synthèse automatique

L'opération de synthèse consiste, dans le cas d'empilements multicouches, à trouver des formules dont les propriétés optiques répondent à un gabarit donné. Hormis pour les problèmes classiques, les méthodes analytiques s'avèrent souvent insuffisantes. L'optimisation numérique des formules est également limitée car celle-ci dépend de la qualité des solutions de départ utilisées, la difficulté étant alors de trouver des solutions de départ réellement efficaces. Ces difficultés ont motivé la mise au point de méthodes numériques automatiques capables de fournir des solutions à partir du seul gabarit et de la liste des matériaux autorisés pour l'empilement. La méthode dite "des aiguilles" fait actuellement référence. En introduisant de nouvelles couches dans l'empilement, cette méthode augmente progressivement la complexité de la formule tout en améliorant ses propriétés optiques. La solution de départ peut ainsi être réduite à une couche unique. Toutefois, l'épaisseur de cette

couche de départ, qui conditionne le nombre final de couches, est un paramètre critique vis à vis des performances finales du traitement.

Nous avons mis au point une méthode qui n'introduit plus de nouvelles couches à l'intérieur de l'empilement, mais les ajoute à l'une de ses extrémités. Pour cela, il est impératif, lors de l'ajout de chaque nouvelle couche de modifier l'indice du milieu extérieur correspondant à cette extrémité, car cet indice doit correspondre à celui de la couche qui sera ensuite ajoutée. Cette méthode, baptisée GLASS (pour *Gradually Layered Alternated Substrate Synthesis*), demande également à la fin une adaptation du traitement aux milieux extérieurs dans lesquels celui-ci devra travailler. En contre partie, elle ne nécessite aucune épaisseur de départ et le nombre de couches n'est a priori pas limité. Une étude plus approfondie doit maintenant être menée pour comparer cette méthode à la méthode des aiguilles. Cette comparaison portera bien évidemment sur les performances optiques des formules obtenues, mais également sur la stabilité de ces performances vis-à-vis d'erreurs sur les épaisseurs, ce qui traduit l'aptitude de ces méthodes à fournir ou non des formules effectivement réalisables.

Filtres absorbeurs

Afin de limiter la lumière parasite, on utilise le plus souvent pour le "bafflage" des instruments des revêtements noirs absorbants réalisés par peinture ou anodisation. Pour certaines applications particulières, ces revêtements sont inadaptés : leur épaisseur peut être trop importante, les performances insuffisantes en terme d'absorption... Une solution alternative consiste à utiliser un traitement multicouches métal-diélectrique qui permet dans une épaisseur inférieure au micron d'obtenir des performances améliorées.

La synthèse de ce type de traitement peut se faire facilement à l'aide de méthodes numériques d'optimisation. Toutefois, par manque de solutions de départ, on peine avec cette approche à étendre le domaine d'efficacité des traitements au-delà d'une octave tout en conservant un taux d'absorption supérieur à 99,9%. Les méthodes automatiques, sans solution de départ, sont elles aussi en difficulté. En effet, dès qu'une couche métallique dans l'empilement devient trop épaisse, la lumière ne la traverse plus, et les propriétés optiques deviennent alors indépendantes des couches qui sont placées derrières. La performance de l'empilement ne progresse plus.

Nous avons donc développé une approche différente, qui nous a permis d'expliquer, dans un premier temps, pourquoi et comment ce type d'empilement permettait d'obtenir des propriétés achromatiques. Il nous faut maintenant chercher à en étendre le domaine d'efficacité.

Ces travaux ont été effectués en parallèle avec les développements technologiques menés sur le même sujet et rapportés au paragraphe 3.1. L'ensemble des ces travaux a été mené en collaboration avec le CNES.

VIII.7.2. Déphaseurs achromatiques

L'une des méthodes directe les mieux adaptées pour la détection d'exo-planètes est l'interférométrie en frange noire. L'étoile est éteinte dans la frange centrale noire d'un interféromètre tandis que la planète se trouve dans une frange brillante. La grande difficulté d'une telle méthode trouve son origine dans le fait que le flux émis par la planète est extrêmement faible en regard de celui émis par son étoile. Dans le cas le plus favorable, qui correspond à une observation dans l'infrarouge thermique, le taux d'extinction dans la frange noire doit être au moins de 10^6 . Il est de plus intéressant de travailler sur un spectre étendu de manière à pouvoir identifier, au travers de leurs bandes d'absorption, la présence dans l'atmosphère de la planète de gaz caractéristiques d'une activité biologique. L'interféromètre doit donc intégrer un système capable d'introduire entre les deux voies un déphasage de π sur un large domaine spectral, et ce avec une excellente précision.

L'Agence Spatiale Européenne a récemment émis, dans le cadre du projet DARWIN, un appel d'offre visant à étudier toutes les solutions possibles pour réaliser une telle fonction, puis à développer celles qui semblent les plus prometteuses. Le consortium avec lequel nous avons répondu vient d'être sélectionné par l'ESA, ce qui va nous permettre d'analyser en détail le concept nouveau que nous avons proposé et qui est basée sur l'emploi d'une paire de miroirs multicouches déphasés de π . Nos calculs préliminaires ont d'ores et déjà montré un niveau de performance théorique proche de celui recherché.

VIII.8. Compléments/rayonnement/diffusion de l'information scientifique

- M. Lequime est membre du GIFO
- M. Lequime est membre du Comité Stratégique de Pop Sud
- F. Lemarquis est co-organisateur du worshop « design methods for optical interference coatings », Février 2003, Marseille
- P. Torchio a organisé le worshop "UV Optical Coatings for Free Electron Lasers", Marseille 2001
- C. Amra est membre permanent du comité international du congrès quadriennal annuel « Optical Interference Coatings » dévolu aux couches minces optiques et thématiques associées
- C. Amra a organisé en Juin 99 le congrès « Optical Interference Coatings », Berlin
- C. Amra organisera pour Septembre 2003 le congrès « Optical Interference Coatings », St Etienne
- C. Amra a organisé, avec l'association Pop Sud, la journée nationale « Couches Minces Optiques » à Marseille, Février 2001
- C. Amra est membre du Conseil d'Administration de Pop Sud

VIII.9. <u>Doctorants RCMO</u>

VIII.9.1. Doctorants présents au 01 Septembre 02

Nom, Prénom	Date de Naissance	Date d'arrivée dans l'unité	Type de bourse	Direction de thèse	DEA d'origine	date de soutenance
ABEL Laetitia	03/06/1977	2002	M.E.N.R.T.	F. LEMARQUIS / M. LEQUIME	Optique, Image et Signal	2005
LUMEAU Julien	01/06/1978	2001	C.N.R.S./ Rég./ Ent.	M. LEQUIME	Optique, Image et Signal	2004
FLORIOT Johan	04/01/1977	2001	C.I.F.R.E	M. LEQUIME	Optique, Image et Signal	2004

VIII.9.2. Thèses soutenues (99-02)

Nom, Prénom	Type de bourse	Directeur de thèse	DEA d'origine	date de soutenance	Devenir professionnel
CATHELINAUD Michel	Pers. ITA Fresnel	C. AMRA	Optique, Image, Signal, Marseille	Oct. 2000	х
PARMENTIER Remy	CNRS/Région	LEQUIME M./AMRA C.	Optique, Image, Signal, Marseille	01/09/2002	Post doc

VIII.10. RCMO: Production scientifique

11 RICL, 8 Proc., 5 CI

VIII.10.1. Publications dans des revues internationales avec comité de lecture

- Escoubas L., Flory F., Lemarchand F., Drouard E., Roux L., Tisserand S., Albrand G., "Fabry-Perot multilayers for enhancing the diffraction efficiency of ion-implanted gratings", Applied Optics, vol. 40, n°10, pp1587-1592, 2001
- Lemarquis F., "Gradually Layered Alternated Substrate Synthesis", Applied Optics, Vol.41, No., pp.3038-3074, 2002.
- Gatto A., Thielsch R., Torchio Ph., Heber J., Kaiser N., Ristau D., Alvisi M., Amra C., et al., "High-performance deep-ultraviolet optics for free-electron lasers", Applied Optics, Vol.41, No.16, pp.3236-3241, 2002.
- 8 Torchio Ph., Gatto A., Alvisi M., Albrand G., Kaiser N., Amra C., "High-reflectivity HfO2/SiO2 ultraviolet mirrors", Appied Optics, Vol.41, No.16, pp.3256-3261, 2002.
- Cathelinaud M., Lemarquis F., Amra C., "Index determination of opaque and semi transparent metallic films. Applications to light absorbers", Applied Optics, Vol.41, No., pp.2546-2554, 2002.
- Gatto A., Feigl T., Kaiser N., Garzella D., De Ninno G., Couprie M.E., Torchio Ph., Albrand G., Amra C., et al., "Multiscale degradations of Storage Ring FEL optics", Nuclear Instruments and Methods in Physics Research A (NIM-A), Vol.483, No., pp.172-176, 2002.
- Parmentier R., Lemarchand F., Cathelinaud M., Lequime M., Amra C., et al., "Piezoelectric Tantalum Pentoxide Studied for Optical Tunable Applications", Applied Optics, Vol.41, No.16, pp.3270-3276, 2002.
- Lequime M., Parmentier R., Lemarchand F., Amra C., "Towards Tunable Thin-Film Filters for Wavelength Division Multiplexing Applicationss", Applied Optics, Vol.41, No.16, pp.3277-3284, 2002.

- Riaud P., Boccaletti A., Rouan D., Lemarquis F., Labeyrie A., "The four-quadrant phase-mask coronagraph. II. Simulations", Publ. Astron. Soc. Pac. Vol. 113, pp. 1145-1154; 2001.
- Lemarquis F., Marchand G., "Analytical achromatic design of metal dielectric absorbers", Applied Optics, Vol.38, No.22, pp., 1999.
- F. Lemarquis, G. Marchand, C. Amra, "Infrared optical filters for the Infrared Atmospheric Sounding Interferometer meteorological space instrument", Appl. Opt., Vol.38, No.19, pp., 1999.

VIII.10.2. Communications avec actes

- Torchio Ph., Ottaviani L., Lazar M., Locatelli M.L. et al., "Annealing studies of AI-Implanted 6H-SiC in an induction fumace", Defects Recognition, Imaging and Physics in Semiconductors (DRIP IX: Ninth International Conference, Rimini (Italy), 24-28 September, 2001.
- Amra C., Deumié C., Natoli J.Y., Commandré M.,, "Topographie multi-échelle pour le filtrage optique multicouche large-bande", J. Phys. IV France, Vol.11, No., pp.Pr7-53 Pr7-56, 2001.
- Gatto A., Thielsch R., Torchio P., Alvisi M., Amra C. et al., "Towards resistant UV mirrors at 200 nm for free Electron Lasers. Manufacture Characterizations Degradations Tests", Inorganic Optical Materials II, Alexander J. Marker III, E.G. Arthurs, Editors SPIE Proc., Vol.4102, pp.261-275, 2000.
- Torchio P., Albrand G., Alvisi M., Amra C., Cousin B, Otrio G., Rauf H., "Thin Film Optical Coatings for the Ultraviolet Spectral Region", 4th International Conference on Space Optics, ICSO'2000 Proceedings, CNES, Toulouse, pp. 475-484, 5-7 December, 2000.
- Gatto A., Kaiser N., Thielsch R., Torchio Ph., Alvisi M. Boccara C. et al., "Achromatic Damage Investigations on Mirrors for U.V. -Free Electron Lasers", Laser Induced-Damage in Optical Materials, Vol.4347, No., pp.535-546, 2000.

- M. Cathelinaud, F. Lemarquis, Ph. Torchio, C. Amra, "Design and manufacture of high absorption metal dielectric coatings for the reduction of straylight", ICSO 2000, 4th Colloque International sur l'Optique Spatiale, CNES Toulouse, pp.119-128, 2000.
- Lemarquis F. ,, "Alternated Gradual Synthesis", EUROPTO, Conf. Advances in Optical Interference Coatings, Berlin, Vol.3738, No., pp., 1999.
- Torchio Ph., Cathelinaud M., Amra C., et al., "Design and production of multilayer light absorbers based on alternated metal-dielectric films", EUROPTO, Conf. Advances in Optical Interference Coatings, Berlin, Vol.3738, No., pp.110-117, 1999.

VIII.10.3. Conférences invitées

- C. Amra, "Design and Technology of Optical Coatings: High Level Expert Meeting European Network of Excellence High Quality Optical Coatings (NoE HighQC)"- September 21st 24st, 2003, Bonassola, Italy
- M. Lequime, "Tunable thin film filters", Advanced design methods for optical interference coatings", Marseille, Février 2003
- 3 C. Amra, "Couches minces optiques: applications modernes", Les Ateliers de l'Astronomie", Grenoble 2002
- 2 C. Amra, M. Lequime, R. Parmentier, F. Lemarchand, "Towards tunable optical filters?", Optical Interference Coatings, Topical Meeting Banff, 2001.
- Amra C., Deumié C., Natoli J-Y, Commandré M., Torchio Ph., "Topographie multi-échelle pour le filtrage optique multicouche large-bande", 5ème Colloque sur les sources cohérentes et incohérentes UV, VUV, X, Ile de Porquerolles, Mai, 2000.

VIII.11. RCMO: Bilan financier

VIII.11.1. Contrats de recherche référencés R3

ANNEE	Contrat	Compte N°	Equipe	Resp.	Montant HT en EUROS	TOTAL par année	Solde au 17.10.02
1999	ANVAR	703 R3	RCMO	Amra	133 392.89		0.00
1999	CNES	706 R3	RCMO	Amra	68 602.06	201 994.95	0.00
2000	CNES	706 R3	RCMO	Amra	68 602.06	68 602.06	0.00
2001	CNES	706 R3	RCMO	Amra	68 602.06		85 966.63
2001	HIGHWAVE Marseille	728 R3	RCMO	Amra	99 091.86	167 693.92	60 191.61
2002	CNES	738 R3	RCMO	Lemarquis	12 196.00	12 196.00	12 196.00
	T	otal RCM	450 486.92		158 354.24		
	MOYE	NNE SUR	112 621.73				

VIII.11.2. Contrats de recherche référencés C

ANNEE	Contrat	Fact n°	Equipe	Chercheur	Date	Montant HT en EUROS	TOTAL par année	Solde au 17.10.02
	CIS BIO	F103	RCMO	Albrand	27/04/1999	2 949.89		
	ALCATEL	F104	RCMO	Albrand	13/07/1999	1 676.94		
1999	SHAKTI	F107	RCMO	Albrand	16/11/1999	1 524.49		
	ALCATEL	F108	RCMO	Albrand	16/11/1999	3 353.88		
	SHAKTI	F110	RCMO	Amra	23/11/1999	23 096.03	32 601.22	
	ESO	F155	RCMO	Albrand	14/09/2000	13 848.94		
2000	Labsystème Affinity	F153	RCMO	Albrand	21/09/2000	1 958.97		
	SHAKTI	F157	RCMO	Albrand	09/10/2000	1 829.39	17 637.30	
2001	CILAS	F201	RCMO	Amra	23/03/2001	18 293.88	18 293.88	
	Observatoire Meudon	D6-21	RCMO	Albrand	26/04/2002	14 000.00		
2002	LPMC UMR 662	F6-22	RCMO	Albrand	25/06/2002	1 155.00		
	EADS SODERN	F6-23	RCMO	Albrand	25/06/2002	440.00	15 595.00	
		TOTAL 19	84 127.40		0.00			
		Moyenne s	21 031.85					

VIII.11.3. Opérations spécifiques CNRS

ANNEE	Origine	CDP	Equipe	Chercheur	Montant HT en EUROS	TOTAL par année
1999	CNRS - FEDER	001 153	RCMO	Amra	22 867.35	22 867.35
		Total RCN	10		22 867.35	
	Mo	5 716.84				

VIII.11.4. Opérations spécifiques Ministère

ANNEE	Origine	CDP	Chercheur	Montant HT en EUROS	TOTAL par année
2000	MENRT Equipt Feder	531 R1 S2	Amra	11 433.68	11 433.68
2001					0.00
2002					0.00
	TOTAL 1999	46 941.91			
	Moyenne su	2758.00			

VIII.11.5. Subventions collectivités territoriales

ANNEE	Contrat	Compte N°	Equipe	Chercheur	Montant HT en EUROS	TOTAL par année	Solde au 17.10.02
1999	Conseil Régional	711 R3	RCMO	Amra	76 224.51		0.00
1999	Conseil Général	712 R3	RCMO	Amra	152 449.02		0.00
2000	Ville Marseille	716 R3	RCMO	Amra	45 734.71		0.00
2001	Conseil Régional	726 R3	RCMO	Amra	70 888.79	345 297.02	0.00
	Т	otal RCMO			345 297.02		
	Moyenr	ne sur quatr	86 324.26				

VIII.11.6. Contrats et fonds européens

ANNEE	Contrat	Compte N°	Equipe	Chercheur	Montant HT Fonds Européens	TOTAL Fonds Européens	SOLDE
1999	LURE	704 R3	RCMO	Amra	118 910.23	118 910.23	80 052.74
2000	FEDER RCMO	719 R3	RCMO	Amra	396 367.44	396 367.44	0.00
2001						0.00	
	-	TOTAL RO	СМО	515 277.68	0.00		
	Мо	yenne su	r 4 ans	128 819.42			

EQUIPE GSM : EFFECTIFS

Nom, Prénom	Date de	Corps,	Section	HDR	Date	Etablissement	%
	naissance	Grade	CNU ou		d'arrrivée	d'affectation	affectation
			CNRS		dans l'unité		
BOURENNANE Salah	févr-61	PR2	61	X	sept. 99	E.N.S.P.M.	1.00
DERRODE Stéphane	juin-71	MC	61		oct. 01	E.N.S.P.M.	1.00
GAIDON Thierry	déc-64	MC	61		oct. 94	E.N.S.P.M.	1.00
GUILLAUME Mireille	nov-53	MC	61		oct. 94	E.N.S.P.M.	1.00

Soit, en effectif temps plein (hors administration): 4

Dont 0 chercheur CNRS,

Et 1 HDR

IX - EQUIPE GSM : BILAN SCIENTIFIQUE

Le traitement du signal multidimensionnel est essentiel pour l'avancée d'un grand nombre de domaines scientifiques et techniques, relevant aussi bien de l'ingénierie des systèmes, que de l'observation des phénomènes naturels.

Depuis septembre 2001, l'Institut Fresnel a créé un groupe de recherche pour développer des thèmes de recherche relevant directement du traitement du signal multidimensionnel. Les activités de recherche de ce groupe ont pour principaux objectifs les développements théoriques et applications de méthodes de traitement de signal, tout en visant des domaines d'application tels que la prévention des catastrophes naturels, l'acoustique, la sismique et l'imagerie spatiale à haute résolution utilisant des méthodes de traitement d'antenne. Pour atteindre ces objectifs le groupe "signaux multidimensionnels" s'intéresse aux thèmes décrits ci-après, qui ont volontairement des intersections importantes au plan de la méthodologie et de la mise en œuvre :

- Traitement du signal appliqué à l'imagerie spatiale
- Traitement du signal appliqué à la vidéo
- Traitement du signal appliqué à l'acoustique et pour la prévention des catastrophes naturelles

Le dernier thème est développé en étroite collaboration avec le Laboratoire de Mécanique et d'Acoustique de Marseille.

Le groupe signaux multidimensionnels s'intéresse à la modélisation des systèmes physiques complexes, en termes de systèmes linéaires, et à l'utilisation des modèles pour réaliser des traitements optimaux en détection, localisation, estimation et identification. Un dénominateur commun à nos travaux de recherche est l'utilisation dans les développements théoriques de la connaissance que l'on peut avoir sur le système, ou sur les signaux à traiter. Les études théoriques développées sont souvent confrontées à des situations réelles par leur application à des données expérimentales.

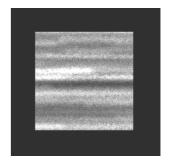
Des méthodologies nouvelles ont été développées :

- En caractérisation de sources large bande par la mise au point d'un nouveau système d'analyse
- En séparation de sources et/ou d'images par les statistiques d'ordre supérieur
- En détection et localisation en traitement d'images par les méthodes haute résolution du traitement d'antenne
- Classification non supervisée

- Description invariante et reconnaissance de formes
- En traitement des signaux multi-composante en utilisant des propriétés d'algèbre tensorielle
- En estimation de paramètres, en situations évolutives, en utilisant les statistiques des signaux observés
- Localisation de sources mouvantes en présence de trajets multiples

IX.1. <u>I. Traitement du signal appliqué à l'imagerie spatiale</u>

(S. Derrode et M. Guillaume)


IX.1.1. I.1 Estimation de trajectoires et reconstruction d'images

Ce thème concerne la reconstruction d'images à partir de séquences prises par un senseur stellaire embarqué, dont le mouvement est modélisé par la somme d'une composante déterministe inconnue et d'une composante aléatoire. L'image totale acquise pendant le déplacement (somme des images de la séquence) est floue, et le mouvement du capteur est estimé pour corriger ce déplacement. Il s'agit de mettre en correspondance un grand nombre d'images (de 30 à 50000) acquises à très faible flux de photons (typiquement 100 photons par image). La modélisation du mouvement du capteur et la prise en compte du bruit présent dans ce type d' images permettent, dans le cadre de la théorie Bayésienne de l'estimation, de proposer des méthodes de recalage pour la reconstruction d'une image exempte de flou de bougé, sans connaissance *a priori* sur l'image à reconstruire. Les algorithmes proposés sont itératifs et la convergence est obtenue pour un très large domaine de paramètres (nombre moyen de photons par image, taille des images, nombre d'images de la séquence, amplitude du mouvement, etc..). L'erreur résiduelle sur le recalage de la séquence est inférieure au pixel.

Ce travail est la suite d'une collaboration avec le LAS (Laboratoire d'Astronomie Spatiale) dans le cadre du projet CARTE, soutenu par le CNES .

Nous avons de plus développé un filtre de Kalman original, pour le suivi des paramètres du mouvement, et adapté à l'observation de ces images (figure 1 ci-après).

1-a : Scène : capteur embarqué dans un engin spatial

1-b : Image totale observée

Le mouvement du capteur est modélisé par des translations aléatoires autour d'un mouvement rectiligne uniforme, et les translations aléatoires sont représentées par un processus auto-régressif. La vitesse du mouvement rectiligne est inconnue, elle est estimée dans un premier temps, puis dans un second temps la composante aléatoire du mouvement est également estimée, ce qui permet de corriger le flou de bougé présent dans l'image totale observée.

1-c : Image de la séquence à faible flux

1-d : Image reconstruite d'après l'image totale observée, par estimation du mouvement

Figure 1 : Le développement de nouveaux capteurs permet de former une image à partir de nombreux signaux physiques (signaux optiques, acoustiques, hertziens,..). La multiplicité des capteurs et des situations fait que les caractéristiques des images obtenues varient fortement, même si la scène observée est la même.

Nous cherchons ici à exploiter cette diversité pour améliorer des techniques très utilisées en traitement de l'image, par exemple la localisation d'objets. Le problème est posé comme un problème de fusion de données, puisqu'il s'agit d'estimer un paramètre à partir de différentes données, qui sont les images obtenues à partir des différents capteurs ou des

différents canaux. Les solutions optimales sont recherchées dans le cadre de la théorie de l'estimation. L'application de ces méthodes à des images couleur à été faite au cours d'une collaboration avec le laboratoire d'optique de l'Université Autonome de Barcelone et a démontré l'apport de ce point de vue, tant pour la probabilité de localisation que pour la précision de l'estimation qui sont largement améliorés. Le cas de plusieurs capteurs (optique et radar) a été traité, et une étude a également été menée pour développer des filtres composites pour la reconnaissance de formes.

IX.1.3. Reconstruction de cubes objets à partir de données d'imagerie spectrale

Les spectromètres à image mesurent à la fois le contenu spectral et spatial d'une scène et permettent d'obtenir de très bons niveaux de résolution. Toutefois, le cube objet, constitué des deux dimensions spatiales et d'une dimension spectrale, n'est pas obtenu directement, mais par l'intermédiaire de ses projections sur un plan, qui correspondent aux différents ordres de dispersion du système. Il faut alors mettre en œuvre des méthodes de reconstruction tomographique pour estimer le cube objet. Dans le cas de l'observation dans l'ultraviolet, les projections observées sont à très faible flux et bruitées par du bruit de Poisson. Différentes méthodes de reconstruction sont proposées dans la littérature, basées sur les méthodes de reconstruction tomographique, et certaines d'entre elles tiennent compte de la nature du bruit présent dans les plans observés et maximisent la vraisemblance de la mesure, par l'intermédiaire d'un algorithme EM (expectation-maximization). Nous proposons une nouvelle méthode de reconstruction, qui est également une solution du maximum de vraisemblance, mais conduit à la minimisation d'un critère qui peut être interprété comme la distance de Kullback entre les données et la projection du cube estimé, avec un terme de régularisation. Cette méthode (figure 2) est actuellement en cours d'évaluation et est menée dans le cadre d'une collaboration avec le Laboratoire d'Astronomie de Marseille, avec qui nous sommes partenaires d'un projet soutenu par le CNES.

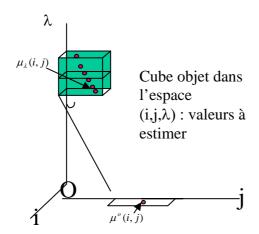


Figure 2 : Projections sur le plan (i, j) : données du spectromètre

IX.1.4. Traitement statistique d'images

L'objectif scientifique de nos récentes recherches est le développement de modélisations probabilistes et traitements statistiques des images multicapteur. L'application visée est la segmentation automatique de telles images en utilisant les techniques récentes d'estimation de mélanges généralisés (système de Pearson, entre autres) et les modèles markoviens cachés.

L'utilisation de modèles markoviens cachés permet la conception de méthodes de segmentation statistique non supervisée des images. Les travaux sur les mélanges généralisés, dont l'estimation permet de prendre en compte la variation de la forme du bruit avec la classe, le capteur, et, éventuellement, le temps, ont abouti à la mise en place de deux nouveaux algorithmes markoviens, comme extension des modèles classiques : les "chaînes couples" introduites par W. Pieczynski et les "chaînes multicapteurs". Leurs principaux intérêts est la prise en compte de la corrélation inter-pixels (modèle "couple") et inter-images (modèle "multicapteur"), ainsi que des mélanges non nécessairement gaussiens. Dans un contexte applicatif, ces deux points permettent de mieux prendre en considération la réalité des scènes observées.

Les images SAR peuvent être utilisées pour aider les navires à emprunter le chemin le plus approprié dans des conditions de mer glacée. Dans ce travail, nous nous sommes intéressés à la région antarctique (cf. figure 3). Chaque état de glace répond à un mécanisme de rétro diffusion propre qui induit une distribution des niveaux de gris spécifique et notre travail a consisté à déterminer automatiquement les distributions de chaque type de glace. C'est un problème d'estimation de mélange et de classification non supervisée d'images. Nous avons ainsi modélisé le mélange avec les familles de lois du système de Pearson. L'estimation des paramètres est, quand à elle, réalisée grâce à l'algorithme ICE (W. Pieczynski) dans un contexte de chaînes de Markov couple cachée. Le résultat de classification obtenu est présenté à la figure 4. Les histogrammes des trois classes montrent le fort recouvrement des distributions des différents types de glace. La dissymétrie de la distribution de certaines classes valide l'apport du système de Pearson par rapport à une modélisation gaussienne. Nous avons d'ailleurs pu rapprocher les distributions empiriques des classes avec des résultats théoriques (lois Gamma et lois Beta de 1^{ère} et de 2^{ème} espèce), ce qui tente à valider le modèle proposé.

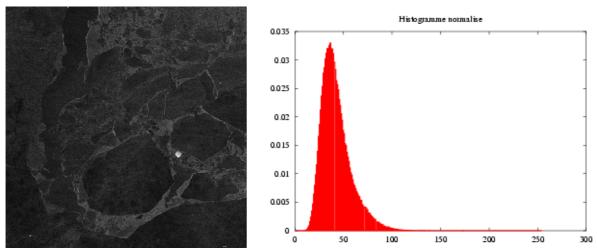


Fig. 3 : Image SAR et histogramme –mer Dumont d'Urville, 24 octobre 1996, IFRTP (RadarSat-SW).

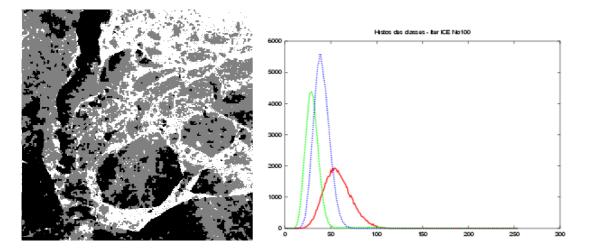


Fig. 4 : Résultat de classification et histogrammes des 3 classes.

Les traitements des images d'une même scène obtenues à des résolutions, des échelles et des dates différentes, jouent un rôle dont l'importance va croissant, en particulier, la multiplication des techniques d'acquisition est à l'origine de la multiplication de telles images en imagerie satellitaire notamment. Le modèle "multicapteur" est actuellement appliqué à la segmentation non supervisée d'images multiéchelle et multirésolution (par le biais d'une décomposition en ondelettes) et sera très prochainement testé dans le cadre de modalités multispectrales et hyperspectrales. Il apparaît également très clairement que le domaine d'application de ces modèles ne se limite pas à la segmentation d'images mais pourrait être appliqué à d'autres domaines du traitement de signaux multidimensionnels comme la séparation de sources dans un contexte multicanal.

Le projet "Multiresolution Oil Slicks Segmentation" (MOSS)⁶, coordonné par Grégoire Mercier (ENST Bretagne) et réunissant W. Pieczynski (INT) et S. Derrode (ENSPM), a débuté au mois de janvier 2002. Il fait suite au projet "Segmentation des Images Radar" (SIR) qui a donné lieu à la mise en place d'une bibliothèque d'algorithmes rapides de segmentation non supervisée d'images radar (fondés sur des chaînes de Markov). Il s'agit dans ce nouveau projet de poursuivre et d'étendre cette bibliothèque à l'aide de nouveaux algorithmes markoviens dans un cadre multiresolution et multiéchelle (transformée en ondelettes), en vue de la détection et le suivi de pollutions marines (nappes d'hydrocarbure).

Certaines recherches menées bénéficient de collaborations avec d'autres établissements d'enseignement supérieur. En particulier, la collaboration avec le département ITI de l'ENST-Bretagne⁷ et le département CITI de l'INT⁸ soutient les activités de segmentation statistique d'images. Les liens avec ces deux équipes se matérialisent par un projet de recherche commun (Projet MOSS, GET-RE 315) et le co-encadrement d'un post-doctorant (Sami Touati) sur le sujet au cours de l'année 2002.

IX.2. II. Traitement du signal appliqué à la vidéo

(S.Derrode et T. Gaidon)

IX.2.1. Indexation de bases d'images

Le développement d'Internet et, de manière plus générale, des Nouvelles Technologies de l'Information et de la Communication, a favorisé l'émergence de nouvelles applications aux enjeux scientifiques et économiques importants. Parmi celle-ci, l'émergence de systèmes d'indexation de bases d'images et de vidéos a créé un vaste champ d'étude et de recherche très dynamique qui allie des compétences tant dans les domaines de l'informatique et de l'intelligence artificielle (base de données, agents) que dans le domaine de l'analyse et la reconnaissance de formes (descripteurs, mesure de similarité).

Dans ce contexte, nous nous sommes intéressés à certains descripteurs de formes issus de l'analyse harmonique pour l'indexation de bases d'images. Ces descripteurs ont certaines propriétés souhaitables pour cette application comme l'invariance par rapport à certaines transformations géométriques, la complétude et la stabilité. Ces caractéristiques ont permis de construire une distance entre formes permettant de mesurer la similarité entre images et de classer la requête parmi les images contenues dans la base. Actuellement, Melle Rim

⁶ Financé par le "Groupement des Ecoles des Télécommunications" GET – RE 315.

Département Image et Traitement de l'Information, Ecole Nationale Supérieure de Télécommunications de Bretagne (Brest), dirigé par le Professeur Basel Solaiman.

⁸ Groupe Image et Optimisation de l'Institut National des Télécommunications (Evry), dirigé par le Professeur Wojciech Pieczynski.

Mezhoud, dans le cadre de sa thèse, développe un démonstrateur opérationnel alliant les résultats théoriques sur les invariants de formes aux aspects, plus pratiques, concernant l'IHM, et la prise en compte par apprentissage du "feedback" de l'utilisateur.

D'autres coopérations sur cette thématique sont en cours de construction. D'autre part, une collaboration avec le groupe GRIFT de l'ENSI⁹ (Tunis) sur les thèmes de la reconnaissance de formes et de l'indexation de bases d'images fixes se concrétise par le coencadrement de la thèse de Rim Mezhoud¹⁰ par S. Derrode.

IX.2.2. Classification de séquences d'images

Ce thème de recherche concerne la classification de séquences d'images vidéos (figure 5).

Nous avons recherché à déterminer plusieurs techniques nous permettant d'effectuer l'identification et la classification de séquences vidéos.

Le développement du multimédia et des nouvelles technologies liées à l'Internet fait que la quantité de données vidéos, accessibles à travers le monde, ne cesse de croître. Ces vidéos sont d'origine et de contenu très variés. La recherche de vidéo par le contenu sémantique , autrement dit, l'identification et la classification d'une séquence vidéo parmi plusieurs classes de séquences, est devenu un enjeu important surtout que les séquences vidéos sont de plus en plus utilisées car les systèmes de compression permettent leur diffusion de façon plus simple.

La plupart des séquences vidéos traitées sont issues des programmes télévisés : les films, les publicités, les séries, les dessins animés, les compétitions sportives. Principalement, deux méthodes ont été développées pour réaliser la discrimination ou la classification.

Figure 5 : Images représentatives des classes de séquences : météo, Journaux TV, pub et séries

⁹ Groupe de Recherche Image et Formes de Tunisie, Ecole Nationale des Sciences de l'Informatique (Tunis), dirigé par le Professeur Faouzi Ghorbel.

Directeur de thèse : Faouzi Ghorbel, soutenance prévue en décembre 2002.

Parmi l'ensemble des caractéristiques visuelles des séquences vidéos (couleur, texture, forme, ...), le mouvement est un critère efficace. Nous avons pris en compte (figure 6) une caractéristique basée sur la différences d'images, qui est liée au mouvement.

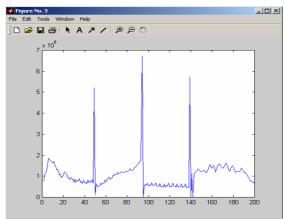


Figure 6 : Vecteur type des "énergies" des différences d'images d'une séquence.

A partir de cette caractéristique liée au mouvement nous avons développé deux méthodes :

- l'histogramme des différences d'images et modélisé par une loi statistique. Les valeurs des paramètres de la loi permettent de discriminer les types de séquences. Par exemple la discrimination de séquences de type BD et de type journaux TV ci-dessous (figure 7).

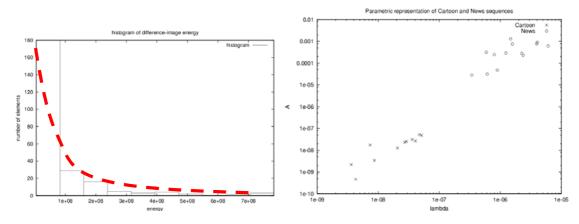


Figure 7 : Discrimination de types de séquences en utilisant un modèle de l'histogramme des différences d'images. A gauche : histogramme réel et courbe paramétrée d'approximation. A droite : classification des séquences en deux régions en fonction des paramètres

- A partir des différences d'images, nous définissons des critères de discrimination tel que écart type ou moyenne, ainsi que le nombre de changements de scènes dans la séquence. Ces critères sont les entrées d'une méthode de classification. (méthode des noyaux). Il existe une phase d'apprentissage qui permet de déterminer les régions associées aux séquences dans l'espace des critères et une phase de classification proprement dite. Par cette méthode, nous avons pu identifier plusieurs classes d'images avec de forts taux de réussite (figure 8).

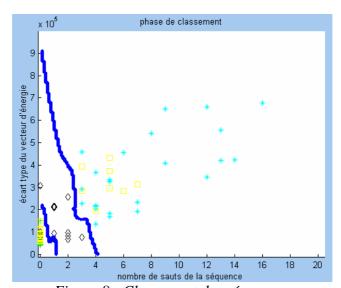


Figure 8 : Classement des séquences " . " : dessins animés, " o " : journaux TV, " + " : météo, " * " publicités, " \diamond " : séries, " ∇ " : sports.

Ces travaux vont être poursuivis en collaboration avec le Speech and image processing group du Departement of Electrical, Electronic Engineering de l'Université de Swansea.

Un programme d'action intégré a été déposé. Il s'agira de développer les travaux de recherche sur la classification en tenant compte des informations audio et de traiter des séquences au format compressé.

IX.3. <u>Traitement du signal appliqué à l'acoustique et pour la prévention des catastrophes naturelles</u>

(S. Bourennane, S. Derrode et D. Muti)

Les méthodes d'analyse spatiale développées depuis deux décennies reposent sur des hypothèses contraignantes qui ne sont généralement pas respectées en pratique et, par suite, donnent des résultats souvent décevants. Il s'agit notamment des hypothèses de non-corrélation entre sources, de planéité des fronts d'ondes, d'identité des capteurs et du bruit spatialement blanc. Classiquement, l'estimation des paramètres des sources est basée sur l'information contenue dans les éléments propres de la matrice interspectrale des signaux reçus. Dans nos plus récents travaux, nous avons développé une méthode permettant la localisation de sources totalement corrélées. Pour cela nous avons utilisé des opérateurs de focalisation obtenus de la matrice des cumulants des signaux. Pour l'estimation des directions d'arrivée des sources rayonnantes qui, en général, est basée sur les méthodes à haute

résolution, nous avons développé un nouvel algorithme "aveugle" plus performant que les méthodes déjà existantes. Le principal avantage de notre algorithme est sa robustesse au bruit et surtout ne nécessite pas de connaissance a priori sur le milieu de propagation. Pour la localisation de sources large bande, nous avons développé une technique ne nécessitant aucune décomposition en éléments propres contrairement à toutes les méthodes existantes actuellement, qui est une opération très "lourde" d'un point de vue pratique. Nous avons amélioré certains opérateurs de focalisation publiés ces dernières années, nos améliorations ont porté essentiellement sur le temps de calcul des algorithmes utilisés qui facilite leur mise en oeuvre en temps réel.

Nous avons également étudié les problèmes liés au bruit, notamment à la corrélation spatiale (le long de l'antenne) qui se traduit par des matrices interspectrales pleines ou bandes. Cette modélisation correspond à la réalité physique. Nous avons développé deux algorithmes pour estimer le propagateur. Nous avons aussi étudié l'influence du modèle de propagation ou du vecteur source qui est souvent perturbé et conduisant à une dégradation des traitements surtout lors de la localisation des sources.

Nos activités de recherche actuelles liées à la séparation de sources s'orientent vers une représentation multidimensionnelle plus riche en information que les méthodes statistiques mono-dimensionnelle. Nos résultats théoriques portent sur l'algèbre tensorielle pour généraliser le concept de la décomposition en valeurs singulières à une décomposition canonique appliquée aux tenseurs. Les résultats obtenus à ce jour sont très encourageants. Ils concernent l'approximation d'un tenseur d'ordre quelconque par un autre tenseur d'ordre un. Une telle approximation constitue une étape fondamentale dans la décomposition canonique des tenseurs qui est à la base de la théorie de la séparation des sources utilisant les notions d'espaces vectoriels.

Les principaux résultats théoriques ont été confrontés à des situations réelles :

IX.3.1. Techniques de traitement du signal et d'acoustique pour l'observation du milieu marin

Pour l'étude de la pollution marine nous avons développé des algorithmes de séparation d'événements ainsi que des méthodes de suivi d'événements à partir d'une série d'émission - réception de signaux acoustiques. En utilisant d'une part des méthodes d'acoustique pour la prédiction des trajets et d'autre part les méthodes de traitement du signal multidimensionnel pour estimer les différentes directions d'arrivée des signaux sur les capteurs, nous avons mis en place un système pour caractériser l'état du fond marin utilisant que des signaux observés. Le système utilisé, peut aussi détecter et identifier des films de polluant répandus sur la surface ou sur le fond. Un tel procédé peut être exploité pour assurer la surveillance et la prévention de la pollution.

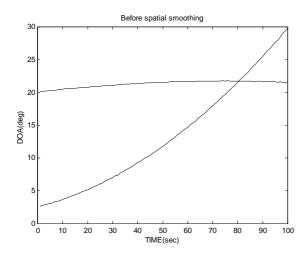
Le développement de ce thème va se poursuivre en étroite collaboration avec le LMA et le laboratoire SPE-UMR 6134 de l'université de corse dans le cadre du projet Européen INTERREG.

IX.3.2. Caractérisation de fonds marins par des techniques "non invasives"

En collaboration avec le Laboratoire de mécanique et d'acoustique (LMA) de Marseille, nous avons développé une méthodologie utilisant conjointement des techniques acoustiques et du traitement d'antenne pour caractériser avec précision les premiers mètres du sous-sol marin sans dégrader le milieu de propagation. Nos travaux ont porté essentiellement sur le développement et la mise en œuvre des algorithmes de traitement d'antenne sur des signaux réels issus d'expérimentations d'acoustiques réalisées en cuve. Une telle étude a permis la mise au point d'une méthodologie pour caractériser les fonds marins sur de grandes échelles sans nuire à l'environnement (pas de carottages, pas de sources explosives ou dangereuses pour la faune...). Les résultats obtenus peuvent être appliqués à la géologie marine, à l'archéologie marine et au génie offshore.

Un programme d'action intégrée a été déposé pour l'année 2003 en collaboration avec le laboratoire d'acoustique sous-marine de l'Université de Crète (Grèce).

IX.3.3. Caractérisation de la surface de la mer


Afin de détecter et d'estimer les contours d'objets à partir d'une image, nous avons utilisé, d'une façon originale, des méthodes à haute résolution. En effet, nos récentes études ont montré la similitude qui existe entre ce problème et celui de la localisation de sources. Par conséquent leur extension au traitement d'images a été immédiate. Pour cela nous avons introduit une modélisation originale permettant le passage d'une représentation bidimensionnelle de l'information à une observation vectorielle ou sous forme de signaux reçus sur un réseau de capteurs. Une fois cette modélisation définie, les méthodes haute résolution peuvent alors être appliquées. Nous avons récemment développé des algorithmes pour traiter des images SAR issues de plusieurs capteurs. L'utilisation de nouveaux systèmes d'acquisition d'images SAR a rendu possible l'application de méthodes haute résolution sans décomposition en éléments propres à l'estimation de paramètres caractéristiques de la surface de la mer. Pour cela nous avons utilisé d'une façon inédite la méthode du propagateur pour estimer la vitesse et le temps de corrélation de la surface de la mer. Habituellement des méthodes statistiques sont utilisées moyennant plusieurs hypothèses a priori.

Un programme d'action intégrée a été déposé pour l'année 2003 en collaboration avec le laboratoire de Traitement de l'information de l'université de Pise (Italie).

IX.3.4. Détection et localisation de sources corrélées en mouvement

La détection et la localisation de sources en mouvement (tracking) sont des problèmes rencontrés dans diverses applications : acoustique sous-marine, acoustique aérienne, sismique marine, télécommunication...

Dans ce cadre nous avons développé des méthodes de localisation de sources en présence de trajets multiple basées sur des statistiques d'ordre supérieur et le filtrage de Kalman. Cette combinaison de traitements a permis à la fois de réduire l'influence du bruit et surtout d'assurer la poursuite de toutes les sources sans connaissance a priori (en aveugle). Les statistiques d'ordre permettent d'éliminer le bruit gaussien et d'estimer la matrice de transfert sources-capteurs qui constitue par la suite la base de la localisation. La poursuite est rendue possible par l'algorithme de Newton et l'estimation par l'algorithme de Kalman. La décorrélation des sources est réalisée par la méthode du lissage spatial appliquée à chaque vecteur directionnel estimé (figures 9-11 ci-après).

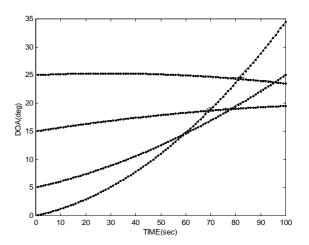


Figure 9 : localisation de quatre sources en mouvement sans lissage spatial

Figure 10 : localisation après lissage spatial

Figure 11 : variations de l'écart-type de l'erreur d'estimation

Dans les années à venir, nous poursuivrons l'étude de la localisation de sources en mouvement, nous nous intéresserons aux développements de méthodes d'analyse spatiale basées sur des statistiques d'ordre supérieur et d'algèbre multilinéaire. Nous étendrons les méthodes à haute résolution pour l'étude de l'environnement marin (pollution, fond marin, poursuite de mammifères marins, ...).

IX.4. Compléments

- GDR en projet : IMCODE Imagerie, Communication, Désordre : BART VAN TIGGELEN, Laboratoire CNRS LPM2C (Grenoble), Correspondant Fresnel : S. Bourennane
- Nombreux Programmes d'Echange avec Angleterre, Italie, Grèce et Tunisie
- 2 PIREX en préparation

IX.5. Doctorants GSM

IX.5.1. Doctorants présents au 01 Septembre 2002

Nom, Prénom	Date de Naissance	Date d'arrivée dans l'unité	Type de bourse	Direction de thèse	DEA d'origine	date de soutenance
CARINCOTT E Cyril	26/12/1978	2002	M.E.N.R.T	S. BOURENNANE / S. DERRODE	Optique, Image et Signal	2005
TECHER Jean David	05/02/1978	2002	Région (Réunion)	S. BOURENNANE / M. GUILLAUME	Mathémathique s	2005
MUTI Damien	21/12/1976	2001	M.E.N.R.T	S. BOURENNANE/ M. GUILLAUME	Optique, Image et Signal	2004

IX.5.2. Thèses soutenues

*Groupe créé en 2001

IX.6. GSM: Production scientifique

15 RICL, 17 proc.

IX.6.1. Publications dans des revues internationales avec comité de lecture

- Bendjama A., Bourennane S., "Enhanced Broadband Matched Field Processing Through High Resolution Techniques.", A paraître IEEE-SAM, Septembre 2002., Vol., No., pp., 2002.
- Bourennane S., "Fast Algorithm for Estimating Ocean Surface Velocity and Coherence Time.", A pararaître IEEE-SAM Septembre 2002., Vol., No., pp., 2002.
- S. Bourennane, A. Bendjama, "Locating wideband sources using higher order statistics.", Applied Acoustics., Vol.63, No.3, pp.235-251, 2002.
- Bourennane S., Bendjama A., Sessarego J.P., "Propagator method for finding wide band source parameters.", Applied Acoustics., Vol.63, No., pp.253-281, 2002.
- Derrode S., Pieczynski W., "Unsupervised signal and image segmentation using pairwise Markov chains.", Soumis à revue IEEE Trans. on Signal Processing, avril 2002., Vol., No., pp., 2002.
- Bourennane S., Bendjama A., "Fast Method for Tracking Parameters Estimation of Correlated Signals. IJCR.", A paraître IJCR., Vol., No., pp.,.
- Derrode S., Ghorbel F., "Motion parameter estimation and symmetry detection in gray-level objects using the analytical Fourier-Mellin representation.", Soumis à la revue Signal Processing, October 2002, Vol., No., pp., 2001.
- 8 Derrode S., Ghorbel F., "Robust and efficient Fourier-Mellin transform approximations for invariant grey-level image description and reconstruction", Computer Vision and Image Understanding., Vol. 83, No.1, pp. 57-78, 2001.

- Derrode S., Ghorbel F., "Comparaison de deux familles complètes de descripteurs de formes pour l'indexation de bases d'objets 2D à niveaux de gris", Annals of Telecommunications, Vol.55, No.3.4, pp.184-193, 2000.
- Bendjama A., Bourennane S., Sessarego J.P., "Estimation of direction of arrival of acoustic wide band sources.", EC Underwater Acoustics., Vol.2, No., pp.1001-1006, 2000.
- Bourennane S., Bendjama A., "Identification of the radiating sources in underwater acoustics.", Journal of the Acoustical Society of America (JASA), Vol.105, No.2, pp., 2000.
- Bourennane S., "Localization method based on the higher order statistics", JASA., Vol.107, No.5, pp., 2000.
- Bendjama A., Bourennane S., "Localization of the sources using identification of signal subspace.", Journal of the Acoustical Society of America (JASA)., Vol.105, No.2, pp., 2000.
- Campos J., L'Hostis S., Guillaume M., "Optimal multichannel estimation for location of a target with non-overlapping noise.", J. Opt. Soc. Am. A., Vol.17, No.11, pp., 2000.
- Guillaume, M., Campos J., Lashin V., "Pattern location estimation for multichannel images.", OPTICS COMMUNICATIONS., Vol.165, No., pp.107-118, 1999.

IX.6.2. Communications avec actes

- Derrode S., Pieczynski W., "SAR image segmentation using generalized pairwise Markov chains.", 9th International Symposium on Remote Sensing (SPIE RS), 23-27 September 2002, Capsis Sofitel Conference, Crete, agia Pelagia, Greece., Vol., No., pp., 2002.
- Derrode S., Ghorbel F., "Shape distance for rotational estimation and rotation symmetry detection in gray-level images.", XI European Signal Processing Conference (EUSIPCO'02), Volume III, pp. 543-546, September 3-6, Toulouse (France), 2002...

- Bourennane S., Bendjama A., Costa B., "Blind estimation of source parameters.", CDROM, Inter-noise 2001, the Hague, Holland, August 2001., Vol., No., pp., 2001.
- Guillaume M., Campos J., Guillou J., "Influence of the multichannel model on the location estimation of a target.", Physics in Signal and Image Processing PSIP'2001,pp187-190, Marseille, 23-24 January, 2001.
- Bourennane S., Bendjama A., "Méthodes de traitement d'antenne pour la caractérisation d'objets en mouvement à partir d'une séquence d'images.", CDROM GRETSI'01, Toulouse, 10-13 septembre 2001, article 363., Vol., No., pp., 2001.
- Bendjama A., Bourennane S, "Panorama des opérateurs de focalisation et applications.", CDROM GRETSI, Septembre 2001., Vol., No., pp., 2001.
- Derrode S., Mercier G., Lecaillec JM., Garello R., "Estimation of sea-ice SAR clutter statistics from Pearson system distributions.", IGARSS, Sydney (Australia), 9-13 juillet 2001.
- Mezhoud R., Hamida L.B., Derrode S., Mhiri S., Ghorbel F., "Nouvelle approche d'indexation de bases d'images par le contenu.", 7ème journées d'étude et d'échange CORESA'01, Palais des Congrès de Dijon, 12-13 nov 2001.
- Guillaume M., Campos J., "Optimal target location in multichannel images .", Proceedings of the First Internationnal Workshop on Image and Signal Processing and analysis Conférence IWISPA 2000, pp 101-106, Pula, Croatia, 15-16 juin, 2000.
- 8 Bendjama A., Bourennane S., "Blind focusing wide band array processing.", CDROM EUSIPCO 2000, papier n 123, Septembre 2000., Vol.2, No., pp., 2000.
- Dalle Mese E., Gini F., Montanari M., Verrazzani L., Bourennane S., "Frequency Estimation of Radar/Sonar Signals Against Correlated Non-Gaussian Noise.", European Signal Processing Conference, EUSIPCO, Tampere, Finland, September 2000., Vol., No., pp.171/1-171/4, 2000.
- Bourennane S., Costa B., Montanari M., Gini F., Dalle Mese E., "Wideband Signal Parameter Estimation Based on Higher-Order Statistics.", European Signal Processing Conference, EUSIPCO, Tampere, Finland, September 2000., Vol., No., pp.171/1-171/4, 2000.

- Ghorbel F., Chakchouk M., Derrode S., "Comparaison de descripteurs locaux-globaux pour l'indexation d'images à niveaux de gris", 6ème journées d'étude de et d'échange CORESA'00, Futuroscope de Poitiers, 19-20 octobre 2000.
- Derrode S., Mezhoud R., Ghorbel F., "Comparaison de deux familles de descripteurs de formes pour l'indexation de bases d'images 2D.", 5èmes journées d'étude et d'échange CORESA'99, Sophia-Antipolis, 14-15 juin 1999.
- Derrode S., Daoudi M., Ghorbel F., "Invariant content-based image retrieval using a complete set of Fourier-Mellin descriptors", Int. Conf. on Multimedia Computing and Systems, Florence (It.), June 7-11 1999, pp. 877-881.
- Derrode S., Mezhoud R., F. Ghorbel, "Reconnaissance de formes par invariants complets et conergents Applications à l'indexation de bases d'objets à niveaux de gris.", 17ème colloque GRETSI'99, Vannes, 13-17 Sept. 1999.
- Lecornu L., Togni S., Derrode S., Hamitouche-Djabou C., "Segmentation 3D et analyse de bancs de poissons à partir d'une séquence d'images acquise par sonar multi-faisceaux.", 17ème colloque GRETSI'99, Vannes, 13-17 Sept. 1999, pp. 119-122.

X - INSTITUT FRESNEL: BILAN SUR LES ACTIVITES INTERNATIONALES

X.1. <u>Organisation de Congrès</u>

4 congrès internationaux ont été ou seront organisés par l'Institut dans les disciplines de l'optique, l'électromagnétisme et l'image respectivement :

- Optical Interférence Coatings (Berlin 99- C. Amra)
- Electromagnetic Optics (Hyères 98- D. Maystre, puis Paris 01 comme coorganisateur)
- Physic in Signal and Image Processing (Marseille 2001- P. Réfrégier)
- Optical Interférence Coatings (St Etienne 03- C. Amra)

Par ailleurs:

- Ph. Réfrégier a été CoPrésident du comité de programme avec D.V. Plant (Canada) de la conférence Optical Computing 2000 à Québec en sept. 2000 (OSA, IEEE, ICO) (de l'ordre de 200 présentations).
- Ph. Réfrégier est président du comité scientifique de la conférence "Physic in Signal and Image Processing" 2003 organisée à Grenoble.
- D. Maystre et G. Tayeb ont organisé entre 1998 et 2002 trois sessions du Colloque international PIERS (successivement à Nantes, puis deux fois à Cambridge-USA).
- M. Saillard a organisé la session "Scattering and Diffraction" de l'assemblée Générale de l'URSI en 2002 et, avec K. Belkebir, une session au PIERS en 2000.

De façon plus générale, les chercheurs de l'Institut sont couramment sollicités pour réguler les sessions dans les congrès internationaux.

X.2. Worshops

- 3 European Worshops "UV Optical Components for Free Electron Laser", Paris 00, Iena 01 et Rome 02 (P. Torchio- équipe RCMO)
- Coprésidence avec B. Javidi (USA) des *Euro-American Workshops on Optoelectronic information processing* soutenu par la SPIE sous forme d'un *Critical Review à* Colmar en juin 199 et à Valence (Espagne) en 2001 (*Ph. Réfrégier équipe PHYTI*).
- Photonic Integrated Circuits and Systems for Optical Communications, Septembre02 (L. Escoubas- équipe COM)

- Design of thin films and applications, prévu Février 03 (F. Lemarquis- équipe RCMO)

X.3. Accueil de chercheurs étrangers

- Equipe PHYTI: 1 Professeur espagnol, un doctorant espagnol, 1 post doc Marocain
- Equipes CLARTE: 3 professeurs (Ukraine, Chine, Australie)
- Equipe COM : 1 post doc néerlandais, 2 stagiaires italiens (1 année)
- Equipe TEM: 1 professeur allemand
- Equipe RCMO: 1 post-doc italien
- Equipe MAP2 : 1 stagiaire italien (1 année)

X.4. Séjours à l'étranger

- N. Bertaux (MCF PHYTI) : 4 mois à l'université du Connecticut
- J.Y. Natoli (MCF MAP2): 1 année aux USA (Lawrence Livermore Laboratory)
- B. Khuhlmey (doctorant CLARTE) : 18 mois en Australie (cotutelle de thèse)
- S. Enoch et G. Renversez (MCF CLARTE): 1 mois à Sydney
- C. A. Guérin (MCF TEM): 1 mois en Suède

X.5. <u>5 ième PCRD</u>

- RCMO: UV optics for the Free Electron Laser (P. Torchio et C. Amra)- Contrat de type Training Mobility Research (T.M.R.), SRFEL SOURCE AT 200 nm
- COM: Programme BARANDE de collaboration bi-latérale avec l' Université de Prague (F. Flory)
- MAP2 : CRAFT (diffusion lumineuse- resp. C. Deumié)
- COM : Nanophos (en phase de démarrage- resp. L. Escoubas)

X.6. Autres programmes européens et internationaux

- CLARTE: PICS du CNRS en 2001 et 2002 avec cotutelle de thèse, en partenariat avec l'équipe du Pr. McPhedran de l'université de Sydney, sur la thématique des *fibres optiques à cristaux photoniques*.
- TEM : Projet d'Action Intégrée avec l'Université de Hong –Kong (méthodes d'impédance)
- PHYTI: Dépôt d'une demande de contrat européen Eurofinder (Franco-Norvégien)- "HYPOLAC: Hyperspectral Polarimetric Active and Passive Imaging"

X.7. Autres collaborations avec publications (RICL ou Proc) communes

- PHYTI:
- * Collaboration avec l'université de Valence en Espagne (Pr. C. Ferreira- algorithmes de corrélation en traitement d'images)
- * Collaboration avec l'université du Connecticutt (Pr B. Javidi- traitement des images holographiques numériques)
 - MAP2: collaboration avec le Lawrence Livermore Laboratory (M. Koslowskyendommagement laser)
 - TEM: Collaboration avec l'université de Potsdam (M. Holschneider, mathématiques)

X.8. Validation de l'information scientifique

- D. Maystre est membre de l'Editorial Board du Journal of Modern Optics (Londres, Rochester) et membre de l'Electromagnetic Academy (Cambridge, USA).
- P. Réfrégier est Topical Editor pour la revue Applied Optics (Information Processing)
- K. Belkebir et M. Saillard sont Guest Editors d'une section spéciale de la revue Inverse Problems.

L'ensemble des chercheurs de l'Institut assure régulièrement l'expertise des publications dans les revues internationales avec comité de lecture, ainsi que la sélection des programmes dans les comités scientifiques de congrès.

X.9. $6^{\text{ième}}$ PCRD (PIREX)

La préparation du 6 ième PCRD a monopolisé une grande partie de nos ressources humaines, et nous a conduit à participer à 17 propositions de PIREX (25 laboratoires européens par PIREX en moyenne) impliquant l'ensemble des équipes de l'Institut :

- POSEIDON: Parametric Optical SourcEs for Information anD EnvirOnmental TechNologies (REX)
- OPTIME-NANO: Optics at sub-micrometric and nanometric scale: towards nano-photonics (REX)
- PHIS: Photonics for the information society (REX)
- HOLOGRAM: A Network of Excellence in the Application of New HOLOGraphic Dimensions in Research and Measurement (REX)
- Mine Action Technologies (MAT) (REX)

- Fa Sol Mi: FAst SOlvers for Maxwell Equations in Microwaves (REX)
- NIF: Nonlinearity in information and life sciences (REX)
- COMPELMAG: Computational Electromagnetics (REX)
- HighQC: High Quality Optical Coatings (REX)
- ME.MO: Methods for Acoustical Monitoring of the Ocean Environment (REX)
- ASDT: Antenna Systems Design & Technology (REX)
- Nanophotonics : Emerging Nanophotonics (REX)
- NAMIC: Micro-scale to Nano-scale photonic structures for optical communications (REX)
- Nano_To_Life: Nano Tools for Life Science (REX)
- Réseau thématique Nanophotonique (REX)
- OptiFab 21: Optical Factory of the 21st Century (PI)
- PIC&SOC: Photonic Integrated Circuits and Systems for Optical Communications (PI)

XI - PROSPECTIVE GENERALE/INSTITUT FRESNEL

Il est clair que l'Institut Fresnel en est encore à une phase de démarrage, et que l' "installation pérenne" de ce laboratoire dans la compétition mondiale des "grands de la photonique" prendra quelques années. Malgré cela, le positionnement actuel de l'Institut nous place au meilleur niveau européen, que l'on n'osait espérer après seulement 2 années de fonctionnement. Il nous faut donc profiter de cette dynamique pour gagner en maturité et donner un caractère incontournable à cette UMR dans le contexte international. Nos priorités politiques et scientifiques pour la période 04-08 sont les suivantes :

XI.1. Priorités politiques/stratégiques

XI.1.1. L'hébergement de l'Institut sur un site unique

L'hébergement des équipes sur 2 sites distincts, bien que sur le même campus, freîne considérablement la production scientifique et l'innovation au sein du laboratoire. Une synergie bien plus forte pourrait naître de l'obtention d'un site unique, à travers les rencontres quotidiennes entre théoriciens, numériciens, expérimentateurs et experts en technologie. L'Institut gagnerait également en homogénéité, par rapport aux différentes missions et priorités qui sont confiées aux chercheurs par nos tutelles régionales. D'un point de vue technique et administratif, notre mode de fonctionnement serait aussi optimisé, avec des charges de travail considérablement réduites grâce à la mise en place de services techniques et administratifs communs, de type caractérisation/métrologie, informatique hors CRI, gestion/comptabilité/secrétariat, ARTT, sans jamais réduire la verticalité des moyens qui garantit le dynamisme, la réactivité et l'efficacité des équipes.

Actuellement l'UMR subit de graves difficultés qui interdisent toute croissance en termes de locaux, et des solutions à court et moyen terme sont en cours (rénovation d'un atelier destiné à héberger la technologie lourde du laboratoire, conduisant à la libération de 3 puis de 10 bureaux), grâce au soutien de l'ENSPM, de l'Université d'Aix-Marseille et de l'Université de Provence. La réalisation de ce projet passe par le soutien des institutionnels régionaux qui ont donné un accord de principe pour le financement des opérations. Toutefois cette opération ne résoudra que le court terme (3 à 5 ans), et ne concerne que l'hébergement des 2/3 des effectifs de l'Institut. Notre priorité demeure donc l'obtention d'un site unique, grâce au soutien de nos tutelles.

XI.1.2. La confirmation et formation des jeunes chercheurs

Si l'UMR est actuellement portée par une dizaine de chercheurs "senior", sa pérennisation et croissance passe par le rayonnement international des chercheurs HDR, et la formation des plus jeunes chercheurs. Dans ce but, une attention particulière sera accordée aux collaborations internationales qui favorisent les séjours à l'étranger. Parallèlement on cherchera à accroître les détachements ou délégations au CNRS (3 délégations cette année) ou dans l'industrie, qui sont l'une des clés pour la formation des jeunes universitaires dont la reconnaissance internationale ne doit pas être postérieure à 10 années de carrière. On veut ainsi favoriser par ailleurs l'homogénéisation des personnels universitaires et CNRS.

XI.1.3. Ecole doctorale

La baisse des effectifs en doctorants demeure un problème majeur qu'il faudra résoudre par un recrutement international à dynamiser. Une infrastructure adéquate (accueil et séjour des étrangers, image de marque...) nous fait actuellement défaut, et ne trouvera des solutions qu'avec l'aide de nos tutelles régionales.

XI.2. Politique Scientifique Européenne

Des efforts importants ont été consentis pour le 6^{ième} PCRD, dont nous attendons la concrétisation via *les 17 Réseaux d'Excellence et Projets Intégrés* qui ont été soumis (voir X). Même si beaucoup reste à faire pour la concrétisation de ces PIREX, celle-ci appuiera considérablement et jouera un rôle déterminant dans la politique scientifique de l'Institut. Précisons en effet que ces PIREX soumis par une ou plusieurs équipes Fresnel confortent les axes priorisés dans ces équipes, et (ou) les axes transverses au sein de l'UMR. Nous présageons ainsi du succès de quelques PIREX majeurs, compte tenu de notre présence européenne permanente.

XI.3. Politique Scientifique Nationale

Comme pour les 17 PIREX européens, les Actions Spécifiques Ministérielles, Actions Coordonnées Optique ou Incitatives, Projets Jeune Equipe, Réseaux Thématiques Pluridisciplinaires, Projets d'Action Intégrée et Projets d'Equipe Multilaboratoire... qui viennent d'aboutir ou sont en cours de l'être, sont un indicateur du dynamisme des chercheurs et appuieront les objectifs de l'Institut:

- PAI en modélisation électromagnétique (TEM)
- AS en Imagerie Haute résolution à Synthèse d'Ouverture

- AS Imagerie et Physique (PHYTI)
- EPML en imagerie polarimétrique (PHYTI)
- Programme Math-STIC (Phyti avec le LIF et le LATP de Marseille)
 Coprésidence de l'Action spécifique physique et imagerie du CNRS/STIC et du ministère de la recherche.
- EPML en optique et biologie (COM) (en évaluation au 24 sept.-02) (H. Rigneault)
- EPML en sondage électromagnétique (TEM)
- ACI jeune chercheur : Imagerie optique à haute résolution (TEM)
- PJE et ACO en poudres optiques (MAP2) :
 - -Micro sphères multicouches pour le filtrage spectral en milieux diffusant. Application aux effets colorés (MAP2)
 - -Prog. « Ultimatech Optique » : Poudre optique multicouche (MAP2)
- ACI en poudres optiques (MAP2) :
 Poudre optique multicouches (MAP2).
- PJE et ACO en capteurs optiques (COM) :
- -Détection optique ultra-résolue en biologie : application à l'étude de l'organisation des bio-membranes (COM)
- -Micro-systèmes pour la détection optique d'espèces chimiques ou biochimiques (COM)
 - ACI en optique et biologie (COM) :
- -Microcavité biologiques luminescentes pour la détection d'un faible nombre de molécules en solution (COM)
- -Physique et Chimie du vivant : Développement d'un microscope d'acquisition de mesures locales de diffusion moléculaire dans les membranes biologiques (COM)
- -Programme interdisciplinaire : nano-objets individuels, projet : structures photoniques et détection optique sub-longueur d'onde de molécules luminescentes : application à l'étude de la diffusion de protéines (H. Rigneault).
- -ACI Jeunes chercheurs dans la cadre du Fonds Nationales pour la Sciences 2001 : détection optique ultra résolue en biologie (H. Rigneault).
 - -Démonstration d'une mémoire quantique à atomes froids ou à solides (L. Escoubas).
 - Action Concertée (ArchiLED) du programme Nanosciences Nanotechnologies du CNRS:

(CLARTE) : étude de l'extraction de la lumière émise par une source placée dans une structure planaire au moyen d'un pavage d'Archimède- collaboration avec le LPMC de l'École Polytechnique

- RTP en composants pour les télécommunications optiques (RCMO)
- RTP Instrument des Systèmes d'Ondes (ISO) CLARTE/TEM
- RTP en BIP Nanophotonique, Institut Electronique Fondamentale (Orsay) CLARTE/COM

Enfin, la direction par D. Maystre du GDR Ondes créé par le STIC au 1er janvier 2002, ne manquera pas de donner une lisibilité accrue des convergences nationales, à travers les nombreux laboratoires qu'il rassemble.

Précisons que l'Institut Fresnel participe également aux GDR suivants :

• GDR Onde: n° 2451,

animateurs du GDR appartenant à l'Institut Fresnel,

-Groupe thématique 1 : modélisation (Marc Saillard),

-Groupe thématique 2 : cristaux photoniques, micro cavités, matériaux complexes et biologiques (Rigneault)

- GDR en projet : IMCODE Imagerie, Communication, Désordre : BART VAN TIGGELEN, Laboratoire CNRS LPM2C (Grenoble), Correspondant Fresnel : S. Bourennane
- GDR: Matériaux et fonction de l'optique non linéaire n° 1852, Laboratoire IOTA, Université Paris, responsable M. Jonathan, participant Fresnel: H. Akhouayri.
- GDR: Couleurs et matériaux à effets visuels, correspondant Fresnel: C. Deumié.

XI.4. <u>Valorisation et Partenariat Industriel</u>

L'Institut a « généré » 4 start-up :

- Phlox dans le domaine de l'éclairage
- Simag dans le domaine de l'image
- Silios dans le domaine des télécommunications optiques
- Highwave Marseille dans le domaine des télécommunications optiques

Actuellement une 5^{ième} start-up est en phase de démarrage dans le domaine des mémoires optiques, en lien avec l'Institut. Il est clair que le succès potentiel de ces start-up

pourra donner lieu à des partenariats conséquents et privilégiés. La sensibilisation et concrétisation des chercheurs à la propriété industrielle/intellectuelle en sera grandie.

En conclusion, on veut insister encore sur le rôle joué par les équipes et responsables au sein de l'Institut, qui continueront de bénéficier d'une forte verticalité pour concrétiser efficacement les objectifs de l'UMR. Les prospectives par équipe sont rappelées ci-après.

XII - PROSPECTIVES PAR EQUIPES DE L'INSTITUT (HORS 6^{IEME} PCRD): BILAN

La structuration de l'Institut, aujourd'hui optimale avec 7 équipes, sera conservée pour atteindre nos objectifs.

XII.1. CLARTE

L'ensemble des thèmes exposés au II.1 seront poursuivis dans les années futures. Cependant, nous pouvons distinguer quelques thèmes émergents dont l'importance est appelée à croître dans les prochaines années:

- Etude des méta-matériaux (en particulier matériaux de la main gauche)
- Etude des fibres optiques à cristaux photoniques
- Etude des nouveaux types de MOEMS
- En collaboration avec le LPMC de l'Ecole Polytechnique, étude de l'extraction de la lumière émise par une source placée dans une structure planaire au moyen d'un pavage d'Archimède (Action Concertée du programme Nanosciences Nanotechnologies du CNRS)
- Etude des forces électromagnétiques s'exerçant sur des micro-particules.

XII.2. MAP2

Les problèmes croissants de tenue au flux vont nous conduire à accentuer notre activité dans le contexte des grands programmes nationaux et européens, avec des ouvertures vers la micro-électronique (photolithographie et vieillissement des optiques UV), le biomédical et les micro-composants de puissance (diodes laser, OPO...). A terme notre plate-forme (avec LP3 FRE 2165 CNRS, le GPEC via la plate-forme PIALA, SESO, CILAS) a pour vocation de devenir un pôle national d'expertise, ainsi qu'une référence internationale dans le domaine de la compréhension de la tenue au flux (gamme UV-IR). Par ailleurs, nous avons engagé des études par microscopie électronique (SEM, FIB, EDS...), pour accéder à des informations physico-chimiques localisées (collaboration CP2M), ainsi que des études de diffusion Brilloin avec le laboratoire des verres de Montpellier.

En ce qui concerne l'activité diffusion lumineuse plusieurs verrous devraient être définitivement levés à moyen terme, et concernent de nouvelles techniques de caractérisation des substrats transparents (contrat CRAFT qui débute), les techniques d'ellipsométrie sur champ diffus (collaboration lab. Drevillon- X), la synthèse et réalisation de poudres multicouches (GDR "couleur" en préparation), l'analyse multi-échelle du speckle...

Enfin, la continuation de la thématique imageurs CMOS est prévue dans le cadre de la convention STSI 2002-2003. Elle s'accompagnera aussi d'étapes de caractérisations optiques

de l'imageur et des diélectriques ainsi que d'une étude du filtrage infrarouge qui impliquent aussi d'autres équipes de l'institut Fresnel (RCMO et COM). L'équipe est impliquée dans le projet Microelectronique PACA (qui rassemble les différents laboratoires concernés et les industriels) en ce qui concerne la diffusion lumineuse et les imageurs CMOS.

XII.3. PHYTI

Nous continuerons à développer nos thèmes de recherches en relation directe avec des partenaires industriels ou des grands organismes et en particulier avec la société SIMAG crée par deux docteurs issus de l'équipe (thèse en novembre 2002). La motivation scientifique essentielle est d'assurer un ancrage solide au sein des STIC et des sciences pour l'ingénieur en favorisant le réalisme des études, et en particulier, de nos études amont. Nous chercherons à encore mieux structurer nos collaborations françaises (GDR ISIS, Programme Math-STIC et EPML du STIC).

Sur le plan strictement scientifique, pendant ces 4 dernières années, nous avons recentré nos études dans deux directions : la segmentation d'images et le traitement des images optroniques actives. Nous avons pour cela développé des méthodes utilisant des concepts nouveaux pour notre équipe et qui reposent sur l'utilisation de techniques avancées de statistiques (groupe d'invariance de lois de probabilité, distances entre lois et bornes de performances), de méthodes issues de la théorie de l'information (complexité stochastique de Rissanen et estimation de l'ordre de modèle) et qui nécessitent une plus grande maîtrise de la nature discrète des images que celle dont nous disposions jusqu'alors (algorithme rapide pour des patchworks de régions non simplement connexes). Nous comptons accroître notre expertise dans ces domaines afin de développer de nouvelles techniques moins supervisées et plus performantes. C'est dans cet esprit que nous développons nos collaborations académiques et internationales.

XII.4. COM

Notre projet biophotonique doit se poursuivre activement en mettant en place des outils de microscopie originaux permettant de s'affranchir des sondes luminescentes systématiquement utilisées. Pour cela nous pensons utiliser une technique optique non linéaire de spectroscopie Raman stimulée (CARS pour Coherent Antistokes Raman Scattering) mettant en œuvre des lasers femtosecondes. Par ailleurs l'utilisation des structures photoniques pour 'modeler' les faisceaux excitateurs et la luminescence restera une priorité.

La thématique micro-nano composants doit se développer autour de la centrale mise en place. En particulier les actions concernant le filtrage en optique guidé et les optiques

diffractives seront privilégiées. Une action importante concerne également les capteurs à gaz utilisant des résonances électromagnétiques

XII.5. TEM

Aux activités présentes en diffraction inverse, vont venir se greffer des applications dans le domaine Optique, dans le cadre d'un projet basé sur un dispositif expérimental original et sur un transfert des techniques d'inversion connues en micro-ondes. Les algorithmes d'inversion que nous développons depuis quelques années devront donc être adaptés à ce nouveau type de données expérimentales.

Depuis maintenant deux ans, notre équipe développe des outils de modélisation spécifiquement adaptés à la diffusion des ondes électromagnétiques par la surface océanique. Les applications visées sont, en géophysique, la salinité, la courantométrie et la détermination de la hauteur des vagues et, dans le domaine militaire, la surveillance par radar côtier ou embarqué (dans le cadre d'un PEA de la DGA).

Enfin, une nouvelle thématique va être introduite au sein de l'équipe. L'objectif est de développer un outil logiciel efficace de modélisation pour la compatibilité électromagnétique et notamment pour les interactions des champs électromagnétiques à haute fréquence avec les tissus biologiques.

XII.6. RCMO

Pour la période 2003-2006, les activités de recherche de l'équipe RCMO devraient se concentrer autour des thématiques suivantes :

- Composants à accordabilité discrète
- Filtres bande étroite à faible nombre de couches (assemblage de spacers massifs ultrafins, utilisation de couple de matériaux à fort choc d'indice)
- Mise en oeuvre des techniques d'ablation par faisceau d'ions énergétiques dans la réalisation de composants nouveaux (déphaseurs achromatiques, filtres bande étroite)
- Composants infrarouges (antireflet très large bande, filtre à grand domaine de réjection, ...)
- Traitements non uniformes (filtres spatialement variables)
- Caractérisation ultra fine et in-situ des procédés de dépôt (croissance des couches, uniformité spatiale, indice de réfraction, absorption) pour application au pilotage

XII.7. **GSM**

Dans les années à venir nous poursuivrons nos travaux de recherche théorique avec mise en œuvre sur des phénomènes physiques plus particulièrement liés à l'environnement. Nous développerons aussi des activités relevant du domaine des nouvelles technologies et du traitement de l'information notamment le traitement du signal appliqué à la séparation de sources et/ou des images par exemple pour les télécommunications.

XIII - BESOINS EN FINANCEMENT ET RECRUTEMENTS

XIII.1. Justification des besoins de financement pour le prochain quadriennal

- Les ressources humaines du laboratoire ont pratiquement doublé ces dernières années, et justifient ainsi notre demande d'augmentation des crédits récurrents (CNRS et Ministère, à doubler), notoirement insuffisants.
- Les crédits d'infrastructure versés à l'ENSPM pour l'hébergement de 5 équipes n'ont pas augmenté depuis plus de 10 ans, malgré la forte croissance des effectifs et locaux. Ces crédits sont crucialement insuffisants (35kE/an) puisqu'ils ne permettent pas d'assumer le coût des fluides (58kE/an) et d'électricité (34kE/an) dévolus aux expérimentations (lasers et bâtis). Au delà de l'augmentation de ces crédits d'infrastructure, qui devraient passer à 100 kE/an, l'acquisition d'un système de recyclage des eaux offrirait à terme un gain financier (et écologique) considérable, pour un investissement de 80 kEuros.
- Par ailleurs, une demande exceptionnelle de 500 kE doit permettre de résoudre en partie les problèmes d'hébergement de l'UMR pour le moyen ou long terme. On veut ici rénover un atelier à proximité immédiate, pour accueillir l'ensemble de la technologie lourde du laboratoire, libérant ainsi nombre de bureaux pour les personnels. Ce déménagement de la technologie pourrait ainsi conduire notre centre "couches minces optiques" quasiment unique en europe (5 bâtis de fabrication basés sur 5 technologies différentes), vers un centre de ressources national capable de répondre à une forte demande à ce jour non satisfaite. Autour de ce cœur technologique viendraient alors s'implanter, avec l'aide des institutionnels régionaux, les 2 autres plateformes de l'UMR (photonique de puissance et micro-optique), libérant encore nombre de locaux. Il ne fait pas de doute que ces opérations permettraient à l'Institut d'acquérir une dimension supplémentaire.
- De la même façon, nos équipes spécialisées en modélisation électromagnétique ont un besoin crucial d'équipement informatique, qui serait résolu avec une station de type Compaq Alpha Serveur ES45 TOUR équipée de 4 processeurs et 8 GO de mémoire et logiciel, pour un coût de 70 kE
- Pour accueillir dans des conditions raisonnables un nouvel ingénieur de recherche dans le domaine micro-onde (déplacement NOEMI avec matériel conséquent proposé par le laboratoire d'origine), nous souhaitons également bénéficier d'un analyseur de réseau AGILENT 8753E avec kit de calibration : 15 kE
- Enfin, un besoin crucial se fait sentir quant à un Système Réseau centralisé de stockage (SAN) à base de Fibre Channel pour assurer la disponibilité et

l'intégrité des données sensibles de l'UMR, administratives ou de recherche : équipement DELL PowerWault 660F Fibre Channel, pour un coût de 30 kE

La demande financière globale est ainsi évaluée à 695 kE.

XIII.2. Justification des besoins de postes pour le prochain quadriennal

L'organigramme présenté en introduction de ce rapport indique clairement, faute de personnels techniques, l'absence cruciale de services transverses pour desservir l'ensemble de l'Institut :

- en électronique et instrumentation scientifique (2 techniciens requis)
- en informatique scientifique (1 technicien et 1 ingénieur de recherche requis)
- en secrétariat (1 technicien requis)

Cette requête est réellement cruciale pour permettre un développement harmonieux des équipes de l'UMR. Précisons ici que Mme Girier (CNRS, T, administratif) a quitté le laboratoire pour un congé de fin d'activité; nous attendons son remplacement (AJT demandé).

Par ailleurs, il est évident que le trop faible (!) nombre de chercheurs CNRS pénalise fortement le laboratoire dans un contexte international où la compétition est sévère. Chaque équipe devrait ainsi disposer au minimum d'un chercheur à temps plein qui viendrait appuyer la politique scientifique du responsable. Cette dernière requête permettrait également de conserver une bonne homogénéité quant à la production scientifique au sein de l'UMR. Précisons sur ce point que M. Saillard a quitté le CNRS pour rejoindre l'université, et que E. Pelletier a quitté le laboratoire pour un congé de fin d'activité. Nous souhaitons que ces chercheurs soient remplacés.

XIV - ANNEXE 1: LISTE COMPLETE DES PERSONNELS, BILAN SUR RECRUTEMENT/FLECHAGE DE PERSONNELS ET DOCTORANTS, PROMOTIONS/REGULARISATIONS

XIV.1. Liste complète des personnels permanents

Nom, Prénom	Date de Naissance	Corps, grade	Section CNU ou CNRS	HDR	Date d'arrivée dans l'unité	d'affectation	Equipe	% affectation à l'équipe
AKHOUAYRI Hassan	mars-56	PR2	63	X	oct. 92	E.N.S.P.M.	MAP2	1.00
ALBRAND Gérard	mai-43	IE2				C.N.R.S.	RCMO	1.00
AMRA Claude	oct-59	DR2	section 8	X	janv. 86	C.N.R.S.	Direction	1.00
BELKEBIR Kamal	juin-66	MC	63		sept. 97	UI	TEM	1.00
BENTOZA Patricia	août-60	AI				C.N.R.S	Administration	1.00
BERTAUX Nicolas	févr-70	MC	61		sept. 00	E.N.S.P.M.	PHITI	1.00
BITTEBIERRE Jean	déc-57	MC	63		oct. 89	E.N.S.P.M.	СОМ	1.00
BORGOGNO Jean Pierre	nov-41	PR2	30	X	jan. 85	UIII (I.U.T.)	MAP2	1.00

BOURENNANE Salah	févr-61	PR2	61	X	sept. 99	E.N.S.P.M.	GSM	1.00
CATHELINAUD Michel	nov-65	IE2				C.N.R.S.	RCMO	1.00
COMMANDRE Mireille	sept-56	PR2	63	X	jan. 85	E.N.S.P.M.	MAP2	1.00
DARMANIAN Serguei	mars-53	PAST	30	X	mai-99	UIII	CLARTE	0.58
DELEUIL ROGER		PrCE	30	X		UI	TEM	0.05
DERRODE Stéphane	juin-71	MC	61		oct. 01	E.N.S.P.M.	GSM	1.00
DEUMIE-RAVIOL Carole	nov-70	MC	63		sept. 98	E.N.S.P.M.	MAP2	1.00
ENOCH Stefan	mai-70	CR2	section 8		oct. 00	C.N.R.S.	CLARTE	1.00
ESCOUBAS Ludovic	mars-72	MC	63		sept. 98	E.N.S.P.M.	COM	1.00
FLORY François	févr-50	PR2	63	X	jan. 85	E.N.S.P.M.	COM	1.00
FORESTIER Frédéric	janv-69	IE	BAP VI		sept-00	U III	CLARTE	1.00
GAIDON Thierry	déc-64	MC	61		oct. 94	E.N.S.P.M.	GSM	1.00
GAZOTY Gérard	mai-45	MC	63		jan. 96	UIII (I.U.T.)	TEM	1.00
GEFFRIN Jean- Michel	oct-65	IR2	section 8		nov.02	CNRS	CLARTE	1.00
GIOVANNINI Hugues	juil-63	PR2	63	X	oct. 91	UIII (I.U.T.)	TEM	1.00

GOITRE Nathalie	juil-71	Secrétaire (Cont.)			2001	E.N.S.P.M.	Administration	0.50
GOUDAIL François	janv-70	MC	61		Oct. 98	E.N.S.P.M.	PHITI	1.00
GUERIN Charles- Antoine	juil-72	MC	30		sept. 99	U III	TEM	1.00
GUILLAUME Mireille	nov-53	MC	61		oct. 94	E.N.S.P.M.	GSM	1.00
HUARD Serge	mai-48	PR1	63	X	oct. 86	E.N.S.P.M.	MAP2	1.00
HUGOUNENC Roland	juil-45	IE2				UI	TEM	0.80
JUAREZ Mirta	août-49	T			1995	E.N.S.P.M	Administration	1.00
KOC Cihan	mars-79	TCN				C.N.R.S.	RCMO	1.00
LASQUELLEC Sophie	nov-71	MC	63		oct00	UIII (I.U.T.)	CLARTE	1.00
LAZARIDES Basile	nov-40	IE1HC				C.N.R.S.	СОМ	1.00
LEMARCHAND Fabien	févr-72	MC	63		sept. 00	E.N.S.P.M.	RCMO	1.00
LEMARQUIS Frédéric	sept-67	MC	63		sept. 98	E.N.S.P.M.	RCMO	1.00
LENNE Pierre- François	juin-71	CR2	section 8		oct. 00	C.N.R.S.	СОМ	1.00
LEQUIME Michel	févr-52	PR2	63	X	oct. 97	E.N.S.P.M.	RCMO	1.00
LITMAN Amélie	mai-02	MC	63		oct-02	UI	TEM	1.00

MAILLET Françoise	janv-48	SASU/CE				U III	Administration	1.00
MARCHAND Gérard	janv-43	AI				C.N.R.S.	RCMO	1.00
MAYSTRE Daniel	mars-45	DR1	Section 8	X	jan. 76	C.N.R.S.	CLARTE	1.00
MESSAOUDI Djamila	juil-66	ADJT				C.N.R.S.	Administration	1.00
MICOLAU Gilles	oct-72	MC	63		sept.02	U III	TEM	1.00
NATOLI Jean Yves	janv-65	MC	63		sept. 95	E.N.S.P.M.	MAP2	1.00
NEVIERE Michel	juil-45	PR0	30	X	jan. 76	Univ. Provence	CLARTE	1.00
NICOLET André	janv-62	PR2	63	X	janv. 00	U III	CLARTE	1.00
PETIT Roger		PrCE		X		UIII	CLARTE	0.15
POPOV Evgueni	juin-56	PR1	30	X	juin-93	Univ. Provence	CLARTE	1.00
REFREGIER Philippe	août-60	PR1	61	X	oct. 94	E.N.S.P.M.	PHITI	1.00
RENVERSEZ Gilles	déc-69	MC	30		sept. 99	U III	CLARTE	1.00
RIGNEAULT Hervé	févr-68	CR1	section 8	X	oct. 94	C.N.R.S.	СОМ	1.00
ROCHE Muriel	déc-75	MC	61		sept02	E.N.S.P.M.	PHITI	1.00
ROUSSEL Luc	juil-63	IE				C.N.R.S.	RCMO	1.00

SABOUROUX Pierre	avr-66	MC	63		jan. 96	U I	TEM	1.00
SAILLARD Marc	sept-61	PR2	63	X	sept. 87	UI	TEM	1.00
SENTENAC Anne	juil-66	CR1	section 8	X	nov. 97	C.N.R.S.	CLARTE	1.00
SIMON Jean-Jacques	mars-68	MC	63		sept-02	UIII (I.U.T.)	COM	1.00
SORIANO Gabriel	oct-72	MC	63		sept. 01	U III	TEM	1.00
SPINELLI Jean-Pierre	févr-60	Т			2002	E.N.S.P.M.	MAP2	1.00
STOUT Brian	sept-62	MC	30		nov. 00	Univ. Provence	CLARTE	1.00
TAYEB Gérard	nov-59	PR2	30	X	oct. 85	U III	CLARTE	1.00
TORCHIO Philippe	juin-64	MC	63		mars-97	UIII (I.U.T.)	RCMO	1.00
TORTEL Hervé	févr-70	MC	63		sept. 96	UI	TEM	1.00
VEVE-FOSSATI Caroline	avr-69	MC	63		sept-99	E.N.S.P.M.	MAP2	1.00
VINCENT Patrick	sept-45	PR1	30	X	jan. 76	U III	TEM	1.00
ZOLLA Frédéric	avr-63	МС	30		oct. 89	Univ. Provence	CLARTE	1.00

XIV.2. <u>Liste des doctorants et ATER</u>

Nom, Prénom	Date de Naissance	Doctorants ou ATER	Date d'arrivée dans l'unité	Equipe	Type de bourse (pour les doctorants)	Directeur de thèse	DEA d'origine	ED de rattachement	Etablissement d'inscription (DEA)
ABEL Laetitia	juin-77	Doctoran t	2002	RCMO	M.E.N.R.T.	F. LEMARQUIS / M. LEQUIME	Optique, Image et Signal, Marseille	Physique et Sciences de la Matière	Aix- Marseille III
BERTUSSI Bertrand	mars-78	Doctoran t	2002	MAP2	DGA	M. COMMANDRE / J.Y. NATOLI	Optique, Image et Signal, Marseille	Physique et Sciences de la Matière	Aix- Marseille III
BILLARD Franck	avril-78	Doctoran t	2001	MAP2	M.E.N.R.T./IUF	H. AKHOUAYRI	Optique, Image et Signal, Marseille	Physique et Sciences de la Matière	Aix- Marseille III
BONOD Nicolas	mars-75	Doctoran t	2001	CLARTE	M.E.N.R.T./I.U.F	M. NEVIERE / E. POPOV	Optique, Image et Signal, Marseille	Physique et Sciences de la Matière	Université de Provence
CARINCO TTE Cyril	décembre -78	Doctoran t	2002	GSM	M.E.N.R.T.	S. BOURENNANE / T. GAIDON	Optique, Image et Signal, Marseille	Physique et Sciences de la Matière	Aix- Marseille III
CMIELEW SKI Octavien	mai-78	Doctoran t	2002	TEM	DGA	M. SAILLARD / H. TORTEL	Méthodes physiques en télé- détection	Sciences de l'Environnement d'Ile de France	
DROUARD Emmanuel	avril-77	Doctoran t	2000	СОМ	C.N.R.S. Région	F. FLORY / L. ESCOUBAS	Optique, Image et Signal, Marseille	Physique et Sciences de la Matière	Aix- Marseille III
DUBOIS Anthony	décembre -78	Doctoran t	2002	TEM	M.E.N.R.T.	M. SAILLARD / K. BELKEBIR	Optique, Image et Signal, Marseille	Physique et Sciences de la Matière	Aix- Marseille III
DURING Anne lise	février- 77	Doctoran t	1999	MAP2	C.N.R.S. Région	M. COMMANDRE	Optique, Image et Signal, Marseille	Physique et Sciences de la Matière	Aix- Marseille III
ETIENNE Emilien	mars-77	Doctoran t	2000	COM	M.E.N.R.T.	H. RIGNEAULT/PF. LENNE	Rayonnement et Plasmas	Physique et Sciences de la Matière	Aix- Marseille III
FEHREMB ACH Anne Laure	octobre- 76	Doctoran t	2000	CLARTE	C.I.F.R.E	S. ENOCH / A. SENTENAC	Optique, Image et Signal, Marseille	Physique et Sciences de la Matière	Aix- Marseille III

FLORIOT Johan	janvier- 77	Doctoran t	2001	RCMO	C.I.F.R.E/High- Wave	M. LEQUIME	Optique, Image et Signal, Marseille	Physique et Sciences de la Matière	Aix- Marseille III
GALLAIS Laurent	septembr e-76	Doctoran t	1999	MAP2	D.G.A.	J-Y NATOLI / C. AMRA	Optique, Image et Signal, Marseille	Physique et Sciences de la Matière	Aix- Marseille III
GALLAND Frédéric	mars-77	Doctoran t	2001	PHYTI	M.E.N.R.T.	Ph. REFREGIER	Optique, Image et Signal, Marseille	Physique et Sciences de la Matière	Aix- Marseille III
GILBERT Olivier	octobre- 77	Doctoran t	2000	MAP2	BDI-C.N.R.S Ent.	C. DEUMIE / C. AMRA	Rayonnement et Plasmas	Physique et Sciences de la Matière	Aix- Marseille III
GUERIN Nicolas	avril-77	Doctoran t	1999	CLARTE	M.E.N.R.T.	G. TAYEB / S. ENOCH	Physique des particules, physique math et modélisation	Physique et Sciences de la Matière	Aix- Marseille III
KUHLMEY Boris	février- 77	Doctoran t	2000	CLARTE	Allocation recherche	D. MAYSTRE (Cot.Australie)	Optique et Photonique	Onde et Matière	Paris XI, Orsay - Lyon 1 et ENS Lyon
LUMEAU Julien	juin-78	Doctoran t	2001	RCMO	C.N.R.S. Rég. Ent.	M. LEQUIME	Optique, Image et Signal, Marseille	Physique et Sciences de la Matière	Aix- Marseille III
MARTIN Pascal	septembr e-77	Doctoran t	2002	PHYTI	Région Ent.	Ph. REFREGIER	Signal, image, parole, télécommunications	EEATS - INPG	ENSERG
MAZINGU E Thomas	novembr e-76	Doctoran t	2001	СОМ	CIFRE	F. FLORY / L. ESCOUBAS	Matériaux de Lyon	Matériaux Polymères et Composites	Univ. Lyon I
MOINE Olivier	août-78	Doctoran t	2002	CLARTE	CNRS	G . TAYEB / B. STOUT	Optique, Image et Signal, Marseille	Physique et Sciences de la Matière	Aix- Marseille III
MUTI Damien	décembre -76	Doctoran t	2001	GSM	M.E.N.R.T.	S. BOURENNANE	Optique, Image et Signal, Marseille	Physique et Sciences de la Matière	Aix- Marseille III
OLIVIER Thomas	juin-74	Doctoran t	1999	MAP2	M.E.N.RT	H. AKHOUAYRI	Optique, Image et Signal, Marseille	Physique et Sciences de la Matière	Aix- Marseille III

ROUX Nicolas	mai-78	Doctoran t	2002	РНҮТІ	DGA	Ph. REFREGIER / F. GOUDAIL	Optique, Image et Signal, Marseille	Physique et Sciences de la Matière	Aix- Marseille III
SANDEAU Nicolas	juin-79	Doctoran t	2002	COM	M.E.N.R.T.	E.N.R.T. H. GIOVANNINI et S		Physique et Sciences de la Matière	Aix- Marseille III
TECHER Jean David	février- 78	Doctoran t	2002	GSM	Région (Réunion)	S. BOURENNANE / M. GUILLAUME	Mathémathiques	Univ. Montpellier II	Univ. Montpellier II
VOARINO Philippe	mai-77	Doctoran t	2000	MAP2	C.N.R.S. Région	C. DEUMIE / C. AMRA	Optique, Image et Signal, Marseille	Physique et Sciences de la Matière	Aix- Marseille III
WAWREZI NIECK Laure	février- 79	Doctoran t	2002	COM	Allocation couplée	H. RIGNEAULT	Lasers et Matières	Sciences de la vie et de la santé	Aix- Marseille III
GALLAIS Laurent	septem bre-76	ATER	sept02		MAP2				
OLIVIER Thomas	juin-74	ATER	sept02		MAP2				

XIV.3. <u>Liste des thèses soutenues</u>

Nom, Prénom	Equipe	Type de bourse	Directeur de thèse	DEA d'origine	date de soutenance	Devenir professionnel
BAGIEU Marie	CLARTE	Alloc.Recherche	D. MAYSTRE	Phys. Sc. Matière	01/09/1999	Ent.
BEGON Cédric	СОМ	DG.A.	H. RIGNEAULT	Optique, Image, Signal, Marseille	01/03/2002	Ent.
BONNARD Stéphane	TEM	A	M. SAILLARD	Physique Sciences de la Matière	01/09/1999	Ent.
CABANILLAS Stéphanie	PHYTI	MENESRIP	Ph. REFREGIER/M. GUILLAUME	Optique, Image, Signal, Marseille	01/11/2000	Ent.
CATHELINAUD Michel	loscm	Salarié (IE)	C. AMRA	Optique, Image, Signal, Marseille	01/10/2000	CNRS
CHESNAUD Christophe	PHYTI	MENESRIP	Ph. REFREGIER	Optique, Image, Signal, Marseille	01/02/2000	Ent.
CHETRITE Bruno	Losem	CIFRE	H. GIOVANNINI	Optique, Image, Signal, Marseille	01/03/1999	Ent.
DESTOUCHES Nathalie	MAP2	C.N.R.S. Région	H. GIOVANNINI / C. DEUMIE	Optique, Image, Signal, Marseille	01/11/2001	Post. Doc
GATTO Alexandre	MAP2	DGA	M. COMMANDRE / P. ROCHE	Optique, Image, Signal, Marseille	01/10/1999	Post. Doc
GERMAIN Olivier	PHYTI	CNES/PACA	Ph. REFREGIER	Optique, Image, Signal, Marseille	01/01/2001	Ent
GRALAK Boris	CLARTE	AMX	D.MAYSTRE/G.TAYEB/ S.ENOCH	Physique des particules, physique mathématiques, et modélisation, Marseille.	01/06/2001	Post doc
GUENNEAU Sébastien	CLARTE	Région/Ent.	G. BOUCHITTE/F. ZOLLA	Physique des particules, physique mathématiques, et modélisation, Marseille.	01/04/2001	Post doc Liverpool

HUGUET- CHANTOME Pascal	СОМ	M.E.N.R.T.	F. FLORY / L. ESCOUBAS	Optique, Image, Signal, Marseille	01/11/2001	Ent.
LEMARCHAND Fabien	COM	CNRS/Région	H. GIOVANNINI	Optique, Image, Signal, Marseille	01/12/1999	Ens. Supérieur
MAHODAUX Christine	COM	MESR	H. RIGNEAULT / H. GIOVANNINI	Optique, Image, Signal, Marseille	01/10/1999	Ent.
MICOLAU Gilles	TEM	AC	M. SAILLARD	Optique, Image, Signal, Marseille	01/07/2001	Ens. Supérieur
PAGE Vincent	PHYTI	MENESRIP	Ph. REFREGIER / F. GOUDAIL	Optique, Image, Signal, Marseille	01/10/2001	Ens. Supérieur
PARMENTIER Remy	RCMO	CNRS/Région	LEQUIME M./AMRA C.	Optique, Image, Signal, Marseille	01/09/2002	Post doc
ROBERT Stéphanie	COM	MESR	H. RIGNEAULT	Optique, Image, Signal, Marseille	01/10/1998	Ent.
RUCH Olivier	PHYTI	C.I.F.R.E Thomson	Ph. REFREGIER	Optique, Image, Signal, Marseille	01/10/2001	Ent.
SORIANO Gabriel	TEM	Reg/Entre.	M. SAILLARD	Optique, Image, Signal, Marseille	01/10/2000	Ens. Supérieur
TISSERAND Stéphane	СОМ	CIFRE	F. FLORY	Optique, Image, Signal, Marseille	01/12/1998	Ent.
VOLTO Patricia	MAP2	CIFRE	J.Y. NATOLI / C. AMRA	Optique, Image, Signal, Marseille	01/12/1998	Ent.

XIV.4. Bilan doctorants avec fléchage

L'UMR et son Directoire tentent de garantir, quant aux moyens directement sous contrôle de la direction (financements récurrents et bourses CNRS/Ministère, Labintel, subventions, postes MCF et ITA/IATOS...), un fléchage équilibré des différentes ressources sur les équipes. Ce fléchage permet à chaque équipe de développer une production scientifique minimale dans des conditions satisfaisantes. Parallèlement, les moyens complémentaires attirés ou obtenus directement par les équipes sont à la discrétion des responsables, pour éviter tout nivellement. Le cas des bourses doctorales est critique dans la mesure où les origines d'attributions sont multiples, pour certaines non prévisibles ; ces attributions sont également liées à l'existence de candidatures.

Le tableau ci-dessous décrit les attributions antérieures et postérieures à la création de l'Institut, compte tenu du fait que les laboratoires fondateurs recrutaient essentiellement sur le même DEA OIS.

Ī								
		96	97	98	99	00*	01	02
	CLARTE	Bagieu	Guenneau	Gralak	Guerin	Fehrembach# Kuhlmey	Bonod	Moine
	MAP2	Gatto		Destouches	Olivier During Gallais	Gilbert Voarino#	Billard	Bertussi
	РНҮТІ	Chesnaud	Germain Cabanillas	Page Ruch			Galland Muti	Roux, Martin
	GSM							Carincotte, Techer
	COM	Lemarchand Mahodaux	Begon	H. Chantome		Drouard Etienne Fehrembach#	Mazingues	Sandeau, Wawrezinieck
	TEM	Bonnard	Soriano	Ballot Micolau				Cmielewski Dubois
	RCMO				Parmentier	Voarino#	Floriot Lumeau	Abel

^{*} début de fléchage dans le contexte Fresnel

[#] thèse sur 2 équipes

XIV.5. Bilan recrutements et fléchage

	CLARTE	TEM	PHYTI	GSM	СОМ	MAP2	RCMO
96							
97			Goudail (ENSPM- 61ième)				Torchio U3 => Fresnel)
98	Enoch (U3- 30ième)	Saillard (CNRS=>UI) Tortel (UI- 63ième)	o neme)		Escoubas (ENSPM- 63ième)	Deumié (ENSPM- 63ième)	Lemarquis (ENSPM- 63ième)
99	Renversez (U3- 30ième)	Guérin (U3- 30ième) Belkebir (UI- 63ième)		Bourennane (ENSPM- 61ième)			
0	Chaumet U3- 30ième) Stout UI- 30ième) Popov UI- 30ième)		Bertaux (ENSPM- 61ième)		Lenne (ENSPM- 63 ^{ième})		Lequime (ENSPM- 63ième) Lemarchand (ENSPM- 63ième)
	Enoch (MCF=>CNRS)	Soriano (U3- 30/63ième)	•	Derrode (ENSPM- 61ième)	Lenne (MCF=>CNRS)		Golomo
2		Micolau U3- 30/63ième) Littman (UI- 63ième)	Roche (ENSPM- 61ième)		Simon (U3 => Fresnel)		
3						MCF1 MCF2	
Flux entrants	6	7	3	2	4	3	4
Flux sortants*	-2	-2	-1	х	-1	-3.5	-3.5

*les flux sortants (des équipes) concernent : E. Pelletier, R. Petit, G. Deleuil, R. Galindo, P. Roche, J.P. Borgogno, , A. Fornier, R. Richier, M. Saillard, G. Trossevin, C. Amra, S. Enoch, PF. Lenne

Ce bilan doit être complété en indiquant, pour les personnels techniques, que :

- C. Koc (concours CNRS externe T) et L. Roussel (concours interne CNRS IE) ont été recrutés pour préparer le départ à la retraite de G. Albrand et M. Marchand (technologie lourde du laboratoire), prévu pour 2003

- J.P. Spinelli (concours externe IATOS, T) est venu remplacer M. Bayle (fin d'activité)
- P. Bentoza est venue via un AFIP (T) pour remplacer Mme Pelletier, responsable gestion du LOSCM
- F. Maillet (IATOS-T) a remplacé Mme Frizzi (fin d'activité)
- Mme Girier (T-CNRS- administration) n'a pas été remplacée

XIV.6. Bilan promotions/régularisations

- PR2 : F. Flory, M. Commandré, H. Giovannini, H. Akhouayri, G. Tayeb, M. Saillard
- PR1 : P. Réfrégier, F. Flory
- DR2: C. Amra
- AI puis IE: G. Albrand
- TC puis AI : P. Bentoza
- IE2 => IE1 : M. Cathelinaud
- T: M. Juarez (régularisation après 10 années de service)

Compléments:

- Nombre d'HDR universités non PR: 0
- Nombre d'HDR CNRS non DR: 2

XV - ANNEXE 2 : HYGIENE ET SECURITE

On trouvera ci-dessous le Rapport sur l'Hygiène et la Sécurité de l'unité UMR 6133, consigné par l'Inspecteur Régional Hygiène et Sécurité.

Marseille, le 9 octobre 2002

Nos réf. DT/ 02. 207. L Votre rapport du 02/10/02

S/C de Monsieur Etienne LE BRUN, Délégué Régional

Objet : Rapport sur l'hygiène et la sécurité de l'unité UMR 6133

Les principaux risques spécifiques rencontrés sont bien identifiés dans votre rapport précité. Face à ces risques, les dispositions prises paraissent suffisantes, hormis la signalétique lumineuse « risque laser » qui devrait être mise en œuvre de façon plus systématique.

Pour ce qui concerne la sécurité incendie, les locaux bénéficient des dispositions prises pour répondre à la réglementation ERP (Etablissement Recevant du Public) compte tenu du fait que le bâtiment héberge aussi l'Ecole de Physique.

Au niveau des installations électriques, il faudrait rénover les réseaux d'origine et installer des protections différentielles 30mA, lors de la mise en place de nouvelles expériences. Les vérifications périodiques réglementaires sont-elles réalisées?

Il faut souligner les compétences et la persévérance de Michel Cathelinaud, ACMO de cette unité, qui réussit à faire prendre en compte, de façon durable, l'hygiène et la sécurité dans l'activité de recherche de cette unité.

Dominique TERRILLON Inspecteur Régional Hygiène et Sécurité

XVI - Annexe 3: Plan de Formation de l'Unite

XVI.1. Formations suivies

XVI.1.1.Année 1999

Nom de l'Agent	Corps	Type de formation	Début	Nombre de jours	Organisateur Et lieu
LAZARIDES	IE2	POWER Point	25/10/99	2 jours	CNRS Luminy
Bazile		EXCEL Initiation	25/11/99	2 jours	CNRS Luminy
GILLY Bernard	MCF	UNIX Débutant	21/09/99	4 jours	CNRS Luminy
BENTOZA Patricia	TCN	Echange doc. Electronique	05/10/99	1 jour	CNRS Luminy
DESTOUCHES Nathalie	Etudiante Thèse	Initiation à la prévention	7/10/99	2 jours	CNRS Luminy
BORGOGNO Jean-Pierre	Prof. UIII	Langage C++ Visual C++	5/10/99	4 jours	INSERM

XVI.1.2.Année 2000

Nom de l'Agent	Corps	Type de formation	Début	Nombre de jours	Organisateur Et lieu
P. Bentoza	AI	XLAB Débutant		3 jours	CNRS Luminy
P. Bentoza	AI	Recyclage Secouriste		½ journée	CNRS Luminy
M. Cathelineau	IE 1	Recyclage Secouriste		½ journée	CNRS Luminy
ROUSSEL Luc	IE2	DEST Informatique & Réseaux 2001	10/10/2000	300 jours	CNAM IPSI

XVI.1.3.Année 2001

Nom de l'Agent	Corps	Type de formation	Début	Nombre de jours	Organisateur Et lieu
BENTOZA Patricia	AI	Recyclage Secouriste	15/11/2001	½ journée	CNRS Luminy
BENTOZA Patricia	AI	XLAB Perfectionnement	08/10/2001	3 jours	CNRS Luminy
CATHELINEAU Michel	IE 1	Recyclage Secouriste	16/11/2001	½ journée	CNRS Luminy
GIRIER Simone	TCS	Préparation à la retraite	02/04/2001		CNRS Luminy
GOITRE Nathalie	CDD T	XLAB Débutant	10/10/2001	2 Jours	CNRS Luminy
		Expression écrite et orale en Français	09/04/2001		INSERM Luminy
JUAREZ Mirta	CDD T	Prise de parole en public	02/05/2001	6 jours	CNRS Luminy
		Autres formations Anglais			
		Conception de pages web (HTML)	14/03/2002	3 jours	CNRS Luminy
LAZARIDES Bazile	IE2	Création d'un Site WEB sur PC	12/06/2001	3 Jours	CNRS Luminy
		Visual Basic	15/05/2001	4 jours	CNRS Luminy
ROUSSEL Luc	IE2	Recyclage Secouriste	08/06/2001		CNRS Luminy

XVI.1.4.Année 2002

		m de gent	Corps	Type de form	nation	Début		ıbre de our	Organisateur Et lieu
	P. B	entoza	AI	Manageme	ent	20/02/0 28/03/0 18/03/0 18/04/0 13/04/0 20/06/0	2 2 2 2 2 2 2 3	jours jours jours jours jours jours	CNRS Luminy
JUAF	REZ	CDD	XLA	AB Débutant			,	,	
Mir		T	Préparat	ion au Concours				UIII	

XVI.2. Besoins en formation

- Techniques du vide
- Plasmas
- Mécanique
- Informatique scientifique (Fortran + C)
- Outils bureautiques (Word et Excel, PPT...)
- X-LAB
- Secouriste
- Anglais
- Unix/Inux, Labview
- Mathematica/Mathlab...
- Latec

XVI.3. Priorités en formation

- X-lab
- Excel et Word
- Logiciels pour conception de site WEB

XVII - ANNEXE 4: BILAN SUR HEBERGEMENT DE L'INSTITUT

XVII.1. <u>Hébergement par ENSPM</u>

*Equipes RCMO/COM/MAP2/GSM/PHYTI

	Etage 1	Etage 2	Etage3
1 personne/cellule	2	7	5
2 personnes/cellule	8	1	1
3 personnes/cellule	6	1	1
·		nombre de bureaux/cellules à N personnes	

	СОМ	MAP2	RCMO	Administration	Services communs optique
Nbre Cellules Manip par équipe	11	7	8	3	6

	COM/MAP2/RCMO	PHYTI	GSM
Nbre Cellules par Salle Info	1	3	2

XVII.2. <u>Hébergement par UIII</u>

Services 161 et 162 (équipes CLARTE/TEM), soit 40 cellules

XVII.3. <u>Hébergement UI</u>

^{*}chambre anéchoïque

XVIII - INSTITUT FRESNEL : BILAN FINANCIER

XVIII.1. CNRS: Movens annuels récurrents

CNRS - Fonctionnement - Moyens annuels 1999 - 2002

ANNEE	Origine	CDP	Equipe	Chercheur	Montant HT en EUROS	TOTAL par année
1999						
	CNRS récurrent		LOE+LSI	Maystre/Réfrégier	36 560.00	
	CNRS récurrent	000 153	LOSCM	Amra	27 440.82	64 000.82
2000						
	CNRS récurrent	000 153	Fresnel	Amra	64 028.59	64 028.59
2001						
	CNRS récurrent	000 153	Fresnel	Amra	67 077.57	67 077.57
2002						
	CNRS récurrent	0MA 153	Fresnel	Amra	70 331.00	70 331.00
		TOTAL 1	999 - 2002		265 437.98	
	Moyenne sur 4 ans					

XVIII.2. <u>Ministère : Moyens annuels récurrents</u>

Ministère : Crédits récurrents 1999 - 2002

ANNEE	Origine	CDP	Chercheur	Montant HT en EUROS	TOTAL par année
	MENRT récurrent fonct.	LOE/LSI	Maystre/Réfrégier	58 872.00	
1999	MENRT récurrent fonct.	531 R1 S1	Amra	20 099.03	
	MENRT vacations	531 R1 S1	Amra	2 528.21	
	MENRT récurrent équipt	531 R1 S2	Amra	15 244.90	96 744.15
2000	MENRT récurrent fonct.	350 R1 S1	Amra	66 293.14	
	MENRT récurrent équipt	577 R1	Amra	30 451.69	96 744.84
2001	MENRT récurrent fonct.	350 R1	Amra	66 293.06	
	MENRT récurrent équipt	577 R1	Amra	29 789.61	96 082.67
2002	MENRT récurrent fonct	350 R1	Amra	66 293.06	
	MENRT récurrent équip	001 153	Amra	30 451.00	96 744.06
	TOTAL 19	386 315.72			
	Moyenne	sur 4 ans		96 578.93	

XVIII.3. Fléchage des crédits récurrents sur les équipes

Bilan sur la répartition des crédits récurrents année 2000

			CNRS	N	IENRT
Equipes	N	%	en KF HT	Equipement en KF HT	Fonctionnement en KF HT
AP 2000			420 000 F	199 750 F	434 854.52 F
Direction			60 000 F	0.00 F	0.00 F
CLARTE	10.080	0.197	70 917	39 400	85 662
MAP2	9.410	0.184	66 203	36 733	79 968
PhyTI + GSM	7.200	0.141	50 655	28 106	61 187
СОМ	7.410	0.145	52 132	28 926	62 972
TEM	9.660	0.189	67 962	37 709	82 093
RCMO	7.410	0.145	52 132	28 926	62 972
Total 6 Equipes	51.170	1.000	360 000	199 750	434 855

Bilan sur la répartition des crédits récurrents année 2001

			CNRS		MENRT	
Equipes	N	%	en KF HT	Equipement en KF HT	Fonctionnement en KF HT 60%	Fonctionnement en KF HT 40% 173 942 F 0.00 F 39 807 F 26 612 F 10 285 F 10 285 F 23 447 F 32 149 F 31 358 F 173 942 F
AP 2001			440 000 F	99 875 F	260 913 F	173 942 F
Direction			60 000 F	0.00 F	0.00 F	0.00 F
CLARTE	12.580	0.229	86 964	22 857 F	59 710 F	39 807 F
MAP2	8.410	0.153	58 137	15 280 F	39 918 F	26 612 F
PhyTI	3.500	0.063	23 940	5905 F	15 425 F	10 285 F
GSM	3.000	0.054	20 520	5905 F	15 425 F	10 285 F
СОМ	7.410	0.135	51 224	13 463 F	35 171 F	23 447 F
TEM	10.160	0.185	70 235	18 460 F	48 224 F	32 149 F
RCMO	9.910	0.180	68 506	18 005 F	47 037 F	31 358 F
Total 7 Equipes	54.970	1.000	380 000	99 875 F	260 913 F	173 942 F
TOTAL			440 000	99 875 F	260 913 F	173 942 F

XVIII.4. <u>Opérations spécifiques CNRS/Ministère</u>

Opérations spécifiques 1999 - 2002

ANNEE	Origine	CDP	Equipe	Chercheur	Montant HT en EUROS	TOTAL par année
1999						
	CNRS - FEDER	001 153	RCMO	Amra	22 867.35	
	CNRS Prog.	2L0 153	COM	Rigneault	4 878.37	
	CNRS Action Incitative	2F0 153	DIVERS	Huard	4 573.47	
	CNNS Action incitative	21 0 133	DIVERS	Tiuaiu	4 37 3.47	
	CNRS Prog PNTS	356 153	TEM/CLARTE	Sentenac	4 177.41	36 496.60
2000						
	CNRS Prog PNTS	356153	TEM/CLARTE	Sentenac	6 860.21	
	CNRS Prog	2L0 153	СОМ	Rigneault	7 317.55	
	CNRS Action Incitative	2JE 153	MAP2	Deumié	10 671.43	
	ONTO ACTION MCITATIVE	201 100	IVI/AI Z	Deutific	10 07 1.40	
	CNRS Action Incitative	2C0 153	COM	Rigneault	6 097.96	
	CNRS Action Incitative	2D1 153	COM	Rigneault	45 734.71	76 681.86
2001						
	CNRS Action Incitative	2D1 153	СОМ	Rigneault	22 867.35	
	CNRS Moyens Spécifiques	0BS 153	PHYTI	Réfrégier	19 361.03	
	Civito Moyeris opecinques	000 100	111111	Refregier	19 301.03	
	CNRS PICS	010 153	CLARTE	Maystre	7 622.45	
				•		
	CNRS récurrent	000 153	PHYTI	Réfrégier	1 524.49	

	CNRS Action Incitative	2F1 153	MAP2	Deumié	14 025.31	
	CNRS Action Incitative	2JE 153	COM	Rigneault	25 916.33	91 316.96
	CNRS PNTS		TEM	Guerain	14 000.00	
2002						
	CNRS Moyens Spécifiques	0MS 153	PHYTI	Bertaux	3 150.00	
	CNRS Moyens Spécifiques	0MS 153	TEM	Giovannini	28 000.00	
	CNRS Moyens Spécifiques	0MS 153	CLARTE	Maystre	7 600.00	
	CNRS Action Spécifique	0MS 153	COM	Lenne	30 489.80	
	CNRS Action Incitative	2P1 153	COM	Rigneault	98 658.00	
	CNRS Action Incitative	2A4 153	MAP2	Deumié	15 240.00	
		· - ·	221			
	CNRS Actions incitatives	2JE 153	COM	Escoubas/Rigneault	26 000.00	
	CNIDO A 11 1 11 11	0.4.4.50	0014	·	05.004.00	
	CNRS Actions incitatives	2A4 153	COM	Escoubas	25 084.00	234 221.80
	Ministère ACI JE		TEM	Sentenac	45 000.00	
	TO	497 717.22				
	Mo		109 679.30			

XVIII.5. Dotation CNRS Labintel

ANNEE	Origine	CDP	Equipe	Chercheur	Montant HT en EUROS			
1999								
2000								
	CNRS équipt labintel	001 153	TEM/CLARTE	Maystre/Saillard	28 203.07			
2001								
	CNRS équipt labintel	001 153	COM/MAP2 GSM/PHYTI	Rigneault/Commandré Bourennane/Réfrégier	45 734.71			
	CNRS récurrent équip	001 153	Locaux/Informat.		30 489.80			
2002								
	CNRS récurrent équip	001 153	MAP2/TEM	Commandré/Saillard	22 865.00			
	TOTAL 1999 - 2002							

XVIII.6. <u>Dotation BOR UIII</u>

- Année 2000 : 110 kF (Locaux) pour déménagement CLARTE

- Année 2000 : 50 000 F (nouveaux MCF)

o CLARTE: 16665 F, Chaumet

o COM: 16665 F, Lenne

o RCMO: 16670 F, Lemarchand

- Annee 2001: 1525 Euros (nouveaux MCF) pour accueil Derrode (GSM)

XVIII.7. <u>Subventions collectivités territoriales</u>

SUBVENTIONS FRESNEL Collectivités territoriales et autres 1999 - 2002

ANNEE	Contrat	Compte N°	Chercheur	Montant HT en EUROS	TOTAL par année
1999	Conseil Régional	711 R3	Amra	76 224.51	
	Conseil Général	712 R3	Amra	152 449.02	228 673.53
	P.A.C.A	714 R3	Flory	50 563.38	
2000	Ville Marseille	716 R3	Amra	45 734.71	
	Conseil Général	718 R3	Flory	20 428.17	
2001	Préfecture BduR	719 R3	Amra	396 367.44	513 093.69
2001	Conseil Général	723 R3	Flory/Escoubas	106 714.31	
	Conseil Régional	724 R3	Flory/Escoubas	38 112.25	
	Conseil Régional	725 R3	Flory/Escoubas	19 119.85	
	Conseil Régional	726 R3	Amra	70 888.79	
	Conseil Général	727 R3	Deumié	45 734.71	005 04 4 00
2002	Conseil Régional	729 R3	Deumié	15 244.90	295 814.82

Moyenne	313 743.51			
TOTAL 1	1999 - 2002	1 254 974.04		
Ville Marseille	737 R3	Deumié	15 244.00	217 392.00
Min. E. Finance Ind.	736 R3	Commandré	60 000.00	
Conseil Régional	735 R3	Commandré	22 867.00	
Conseil Régional	734 R3	Commandré	35 435.00	
Conseil Général	733 R3	Commandré	83 846.00	
Consoil Général	733 D3	Commandrá	83 846 00	

XVIII.8. <u>Contrats européens</u>

FONDS EUROPEENS + Collectivités territoriales FEDER - FSE 1999 - 2002

ANNEE	Contrat	Contrat Compte N° Equipe		Chercheur	Montant HT Fonds Européens	TOTAL Fonds Européens			
1999	LURE	704 R3	RCMO	Amra	118 910.23	118 910.23			
2000	FEDER RCMO	719 R3	RCMO	Amra	396 367.44	396 367.44			
2001						0.00			
	FEDER		СОМ	Flory/Escoubas	177 871.00				
2002	FSE		СОМ	Flory/Escoubas	90 282.50				
	CRAFT		MAP2/RCMO	Deumié	208 600.00	476 753.50			
	TOTAL 1999 - 2002								

XVIII.9. <u>Contrats de recherche référencés R3</u>

Contrats détudes référencés R3 1999 - 2002

ANNEE	Contrat	Compte N°	Equipe	Resp.	Montant HT en EUROS	TOTAL par année
1999						
	DGA	702 R3	PHYTI	Réfrégier	23 400.00	
				-		
	ANVAR	703 R3	RCMO	Amra	133 392.89	
	PECHINEY	705 R3	COM	Flory	9 604.29	
	CNES	706 R3	RCMO	Amra	68 602.06	
	THOMSON CSF	707 R3	PHYTI	Réfrégier	22 800.00	
	ANVAR	708 R3	COM	Flory	3 792.17	
	CEA VALRHO	709 R3	MAP2	Commandré	26 678.58	
	DGA	710 R3	PHYTI	Réfrégier	30 900.00	
	CNET/France Télécom		СОМ	Rigneault	57 930.63	377 100.61
	ONERA	4119 R3	TEM	Saillard	19 815.20	
2000						
	CNES	706 R3	RCMO	Amra	68 602.06	
	DGA	715 R3	PHYTI	Réfrégier	50 951.51	
	DGA	717 R3	COM	Rigneault	29 074.01	
	ENS Cachan	720 R3	COM	Rigneault	19 119.85	

	CEA VALRHO	721 R3	MAP2	Commandré	19 818.37	
	ALCATEL	4149 R3	CLARTE	Tayeb/Vincent/Enoch	30 489.80	
				·		
	ONERA	4119 R3	TEM	Saillard	19 815.20	237 870.80
	St Gobain	4130 R3	TEM	Saillard/Sentenac	15 000.00	
2001	CNES	706 R3	RCMO	Amra	68 602.06	
	DGA	722 R3	MAP2	Natoli	26 545.95	
	HIGHWAVE Marseille	728 R3	RCMO	Amra	99 091.86	
	IRSID	730 R3	MAP2	Deumié	14 999.92	
	ANVAR	731 R3	СОМ	Escoubas	4 180.46	
	Ion Beam Serv.	732 R3	СОМ	Escoubas	89 999.95	
	DGA	ADER	MAP2	Commandré	30 489.80	333 910.00
2002	Min. E. Finance Ind.	736 R3	MAP2	Commandré	60 000.00	
	CNES	738 R3	RCMO	Lemarquis	12 196.00	
	ESSILOR	739 R3	MAP2/RCMO	Lequime/Deumié	10 750.00	
	DGA	ADER	MAP2	Commandré	43 000.00	
	Min. E. Finance Ind.	En cours	MAP2	Commandré	190 000.00	315 946.00
	ТО		1 299 012.41			
	MOY	ENNE SU	R 4 ans		316 206.85	

XVIII.10. <u>Contrats de recherche référencés C</u>

Contrats référencés C * L'institut Fresnel a été créé de fait en 1999 1999 - 2002

ANNEE	Contrat	Fact n°	Equipe	Chercheur	Date	Montant HT en EUROS	TOTAL par année
	SESO (3)	F101	MAP2	Akouayri	02/01/1999	228.67	
	CEA Limeil	F102	MAP2	Commandré	22/01/1999	10 671.43	
	CIS BIO	F103	RCMO	Albrand	27/04/1999	2 949.89	
	Angénieux	F105	COM	Escoubas	13/07/1999	800.36	
	ALCATEL	F104	RCMO	Albrand	13/07/1999	1 676.94	
4000	CIS BIO	F106	COM	Rigneault	24/09/1999	4 802.14	
1999	SHAKTI	F107	RCMO	Albrand	16/11/1999	1 524.49	
	ALCATEL	F108	RCMO	Albrand	16/11/1999	3 353.88	
	SHAKTI	F110	RCMO	Amra	23/11/1999	23 096.03	
	CIS BIO	F109	COM	Rigneault	23/11/1999	5 602.50	
	Cybernétix	F111	COM	Rigneault	17/12/1999	914.69	
	Jobin Yvon		CLARTE	Nevière	01/10/1999	2 674.57	58 295.59
2000	CIS BIO	F151	COM	Rigneault	21/01/2000	5 602.50	
	ESO	F155	RCMO	Albrand	14/09/2000	13 848.94	
	Labsystème Affinity	F153	RCMO	Albrand	21/09/2000	1 958.97	

	CIS BIO	F156	COM	Rigneault	14/09/2000	3 811.23	
	THOMSON Sextant	F154	MAP2	Deumié	14/09/2000	3 048.98	
	SHAKTI	F157	RCMO	Albrand	09/10/2000	1 829.39	
	Jobin Yvon	532 C	CLARTE	Maystre/Nevière	01/02/2000	3 658.78	
	Jobin Yvon	532 C	CLARTE	Maystre/Nevière	01/10/2000	2 728.08	36 486.86
2001	CILAS	F201	RCMO	Amra	23/03/2001	18 293.88	
	CTA - DGA	F203	MAP2	Commandré	10/04/2001	11 229.73	
	LUNEAU S.A.	F204	COM	Lenne	07/05/2001	6 373.29	
	SAGEM	F206	MAP2	Deumié		7 774.90	
	THOMSON	F208	COM	Escoubas	21/09/2001	7 265.42	
	HIGH WAVE Lannion	F202	COM	Escoubas	07/05/2001	1 524.49	
	CEA DAM Le Ripault	F205	MAP2	Commandré	17/06/2001	1 524.49	
	CEA CESTA	F211	MAP2	Commandré	19/11/2001	42 685.72	
	HIGH WAVE Lannion	F207	COM	Escoubas	21/09/2001	7 622.45	
	CEA DAM Le repault	F209	MAP2	Commandré	15/01/2001	2 439.18	
	CEA DAM lle de France	F210	MAP2	Natoli	11/09/2001	4 573.47	
	CEZANNE	F4-24	COM	Rigneault	03/12/2001	5 933.32	
	JOBIN YVON	532 C	CLARTE	Maystre/Nevière	01/02/2001	3 731.95	
	SAINT-GOBIN	532 C	CLARTE	Nicolet/Zolla	15/06/2001	15 244.90	
	DGA/DASSAULT	532 C	TEM	Saillard	07/12/2000	6 100.00	
	AICATEL Space Indus.	532 C	CLARTE	Tayeb/Vincent/Enoch	09/10/2001	12 197.00	
	AICATEL Space Indus.	532 C	CLARTE	Tayeb/Vincent/Enoch	09/10/2001	19 820.00	

	CROMAPLEX	532 C	CLARTE	Popov	23/05/2001	6 112.00	180 446.20
	CEA Le Ripault 3	F2-22	MAP2	Commandré	15/01/2002	4 573.50	
	CEA Le Ripault 4	F2-21	MAP2	Commandré	21/03/2002	1 829.39	
	CEA lles de France	D2- 25	MAP2	Natoli	23/07/2002	20 000.00	
	CEA CESTA 3	F2-23	MAP2	Commandré	21/01/2002	45 735.00	
	Observatoire Meudon	D6- 21	RCMO	Albrand	26/04/2002	14 000.00	
2002	LPMC UMR 662	F6-22	RCMO	Albrand	25/06/2002	1 155.00	
	EADS SODERN	F6-23	RCMO	Albrand	25/06/2002	440.00	
	THALES	542 C	PHYTI	Réfrégier		11 433.00	
	Copoldyn		PHYTI	Réfrégier		15 200.00	
	JOBIN YVON	532 C	CLARTE	Maystre/Nevière	01/11/2001	9 399.84	
	CROMAPLEX	532 C	CLARTE	Popov	23/05/2002	6 112.00	129 877.73
	то	405 106.37					
	Мо	101 276.59					

XVIII.11. Récapitulatif

Récapitulatif des Crédits Fresnel de 1999 à 2002 (en Euros)

	Contrats d'études Référencé R3	Contrats référencés C	Crédits CNRS	Crédits Ministère	Subventions Collectivités territoriales	Fonds Européens	TOTAL Général
TOTAL 1999-2002	1 299 000	405 000	845 000	433 000	1 255 000	992 000	5 229 000

XIX - LISTE COMPLETE DES PUBLICATIONS, CONFERENCES, BREVETS ET OUVRAGES

190 RICL, 106 Proc, 39 CI, 20 Bookch, 10 Br.

XIX.1. Publications dans revues internationales avec comité de lecture

190 Saillard M., Vincent P., Micolau G., "Reconstruction of buried objects surrounded by small inhomogeneities", Inverse Problems 16 (2000) 1195-1208 189 Bonnard S, Vincent P, Saillard M., « Inverse obstacle scattering for homogeneous dielectric cylinders unsing a boundary finite-element method", IEEE Trans. Ant. Propagat., 48 (2000) 393-400 188 Bonnard S., Saillard M., Vincent P., « Improved inverse scattering for dielectric homogeneous cylinders », J. Opt. A: Pure Appl. Opt., 1 (1999) 566-572 187 B. Gralak, S. Enoch and G. Tayeb, "From scattering or impedance matrices of gratings to Bloch modes of photonic crystals", Journal of Optical Society of America A, 19, p.1547-1554, 2002. K. Watanabe, R. Petit, M. Nevière, "Differential theory of gratings made of 186 anisotropic materials", J. Opt. Soc. Am. A 19,325-334, 2002-05-15. S. Enoch, B. Gralak, G. Tayeb, "Enhanced emission with angular confinement 185 from photonic crystals", Applied Physics Letters, 81, p.1588-1590, 2002. A. Rahmani, P.C. Chaumet, G. W. Bryant, "Local-field correction for an 184 interstitial impurity in a crystal", Opt. Lett. Vol 27, 430 (2002). 183 D. Felbacq, S. Clerjon, J.L. Damez, F. Zolla, "Modeling microwave electromagnetic field absorption in muscle tissues", EPJ Applied Physics proofs - Accepted April 2002 - must be published. 182 S.Guenneau, A.Nicolet, F. Zolla et S.Lasquellec, "Modelling of Photonic crystal optical fibers with finite elements", à paraître dans "IEEE Transactions on Magnetics", vol38, n 2, Mars 2002, pp. 1261-1264. 181 P.C. Chaumet, A. Rahamani, M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-objects with an apertureless probe", Phys. Rev. Lett. Vol 88, 123601, 2002.

180

2002.

A.L. Fehrembach, D. Maystre, A. Sentenac, "Phenomenological theory of

filtering by resonant dielecric gratings", J.Opt. Soc. Am. A, 19, 1136-1144,

- E.Popov, M.Nevière, B.Gralak, G.Tayeb, "Staircase approximation validity for arbitrary shaped gratings", J. Opt. Soc. Am. A 19,33-42, 2002.
- 178 R. Reinisch, M. Nevière, G. Tayeb, E. Popov, "Symmetry relations for reflection and transmission coefficients of magneto-optic systems", Optics Communications, Vol. 205, p.59-70, 2002.
- B. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L.C. Botten, C. Martijn de Sterke, and R. C. McPhedran, "Multipole method for microstructured optical fibers II: implementation and results.", J. Opt. Soc. Am. B}, in press, 2002.
- T.P. White, B. Kuhlmey, R.C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L.C. Botten, "Multipole method for microstructured optical fibers I: formulation", J. Opt. Soc. Am. B, in press, 2002.
- S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin and P. Vincent, "A metamaterial for directive emission", Phys. Rev. Lett. submitted..
- B. Bozkhov, M. Neviere, E. Popov, "Differential method as applied to multilayered structures with arbitrary refractive index profiles.", Bulgarian J. Physics, à paraître.
- D. Felbacq, F. Zolla, "Do Fresnel coefficients exist?", Foundations of Physics, soumis.
- S.Enoch, E.Popov, M.Nevière, R.Reinisch, "Enhanced light transmission by hole arrays", Pure and Applied Optics,à paraître.
- D. Maystre and S. Enoch, "Negative refraction and perfect lenses: an analytic demonstration", Phys. Rev. Lett. submitted.
- S.Guenneau, A.Nicolet, F.Zolla et S.Lasquellec, "Numerical and theoretical study of photonic crystal fibers", Progress in Electromagnetic Research" (27 pages), à paraître, 2002.
- S. A. Darmanyan, A.M. Kamchatnov, M.Nevière, "T.E.-polarized guided modes in layered structures with ki2 nonlinearity", Nonlinear Optics,à paraître. 2002.
- D. Felbacq, B. Guizal, F. Zolla, "Ultrarefraction phenomena in Bragg mirrors", Journal of Optics, à paraître. 2002.

- S. Guenneau, F. Zolla, "Homogenization of 3D finite photonic crystals with heterogeneous permittivity and prmeability. Part I Asymptotic analysis", Soumis à Asymptotic analysis journal..
- F. Zolla, S. Guenneau, "A duality relation for the Maxwell system", Soumis à Phys. Rev..
- S. Enoch, E. Popov, M. Neviere, "Phenomenological study of enchanced transmission by sub-wavelength hole arrays", J. Opt. A-Pure Appl. Op. special issue "Electromagnetic Optics" in press.
- B. Stout, J.C. Auger, J. Lafait., "A transfer matrix approach to local field calculations in multiple scattering problems.", Journal of Modern Optics Vol 49 No 13..
- D. Prot, B. Stout, K.Lafait, N.Pinçon,B Palpant and S Debrus, "Local electric field enhancements and large third-order optical nonlinearity in nanocomposite materials", J. Opt. A: Pure Appl. Opt. 4 (2002) S99-S102.
- B Stout, C Andraud, D Prot, J Lafait, J C Auger and S Stout, "Complete field descriptions in three-dimensional multiple scattering problems: a transfermatrix approach", J. Opt. A: Pure Appl. Opt. 4 (2002).
- J C Auger, B Stout, "A recursive centered T-Matrix algorithm to solve the multiple scattering equation: numerical validation", A paraître: Journal of Quantitative Spectroscopy & Radiative Transfer.
- J C Auger, R G Barrera, B Stout, "Scattering efficiencies of aggregates of spherical particles", A paraître : Journal of Quantitative Spectroscopy & Radiative Transfer.
- B Stout, C Andraud, S Stout, J Lafait,, "Absorption in multiple scattering systems of coated spheres", Soumis: Journal of the Opt. Soc. Am A.
- Drouard E., Huguet-Chantôme P., Escoubas L., Flory F., "dn/dT measurements performed using guided waves and their application to the temperature sensitivity of WDM filters", Applied Optics, Vol.41, No.16, pp.3132-3136, 2002.
- Flory F., Escoubas L., Lazaridès B., "Artificial anisotropy and polarizing filters", Applied Optics, Vol.41, No.16, pp.3332-3335, 2002.
- Lenne P-F., Colombo D., Giovannini H., Rigneault H., "Flow Profiles and directionality in Microcapillaries Measured by fluorescence correlation spectroscopy", Single Molecules, Vol.3, No., pp.194-200, 2002.
- Huguet-Chantôme P., Escoubas L., Flory F.,, "Guided-wave technique for the measurement of dielectric thin-film materials thermal properties", Applied Optics, Vol.41, No.16, pp.3127-3131, 2002.

- Flory F., Escoubas L., "Optical properties of nanostructured thin films art. soumis", Progress in Quantum Electronic Journal, Vol., No., pp., 2002.
- Lenne P-F. ,Etienne E. , Rigneault H. ,, "Subwavelength patterns and high detection efficiency in fluorescence correlation spectroscopy using photonic structures", Appl. Phys Lett., Vol.80, No., pp.4106-4108, 2002.
- Escoubas L., Drouard E., Flory F., "Theoretical study of amplitude and phase filtering of guided waves", Applied Optics, Vol.41, No.16, pp.3084-3091, 2002.
- Bendjama A., Bourennane S., "Enhanced Broadband Matched Field Processing Through High Resolution Techniques.", A paraître IEEE-SAM, Septembre 2002., Vol., No., pp., 2002.
- Bourennane S., "Fast Algorithm for Estimating Ocean Surface Velocity and Coherence Time.", A pararaître IEEE-SAM Septembre 2002., Vol., No., pp., 2002.
- S. Bourennane, A. Bendjama, "Locating wideband sources using higher order statistics.", Applied Acoustics., Vol.63, No.3, pp.235- 251, 2002.
- Bourennane S., Bendjama A., Sessarego J.P., "Propagator method for finding wide band source parameters.", Applied Acoustics., Vol.63, No., pp.253-281, 2002.
- Derrode S., Pieczynski W., "Unsupervised signal and image segmentation using pairwise Markov chains.", Soumis à revue IEEE Trans. on Signal Processing, avril 2002., Vol., No., pp., 2002.
- 146 C. Deumié, P. Voarino and C. Amra,, "Overcoated microspheres for the specific optical powders. ", Applied Optics, Vol.41, No.16, pp. 3299-3305, 2002.
- 145 C. Deumié, H. Giovannini and C. Amra, "Angle-Resolved ellipsometry of light scattering :discremination of surface and bulk effects in substrates and optical coatings", Applied Optics, Vol.41, No.16, pp. 3362-3369, 2002.
- N. Destouches, C. Deumié, H. Giovannini and C. Amra, "Refractive index of optical powders", submitted to Applied Optics 2002.
- Natoli J.Y., Gallais L, Akhouayri H., Amra C., "Laser-induced damage of materials in bulk, thin-film and liquid forms", Applied Optics, Vol.41, No.16, pp.3156-3166, 2002.
- During A., Fossati C., Commandré M.,, "Multi-wavelength imaging of defects in UV optical materials", Applied Optics, Vol.41, No.16, pp.3118-3126, 2002.
- L.Gallais and JY.Natoli, "Optimized metrology for laser measurement and associate multiparameters study", to be published in Applied Optics.

- F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin L. Gallais, J. Y. Natoli, M. Perra H. Bercegol, L. Lamaignère, M.Loiseau J. T. Donohue, "Study of UV laser interaction with gold nanoparticles embedded in silica", to be published in Applied physique B.
- Pagé V., Garcia J., Réfrégier Ph., "Detection of objects composed of several regions using a region configuration estimation method", JOSA A., Vol.19, No.2, pp.306-314, 2002.
- Réfrégier Ph., Goudail F.,, "Invariant polarimetric contrast parameters of coherent light.", Journal of the Optical Society of America A., Vol.19, No.6, pp.1223-1233, 2002.
- Esteve-Taboada J., Réfrégier Ph., García J., Ferreira C., "Target localization in the three-dimensional space by wavelength multiplexing.", Optics Com., Vol.202, No., pp.69-79, 2002.
- Goudail F., Réfrégier Ph., "Target segmentation in active polarimetric images using statistical active countour", Applied Optics-IP., Vol.41, No.5, pp.874-883, 2002.
- Lemarquis F. ,, "Gradually Layered Alternated Substrate Synthesis", Applied Optics, Vol.41, No., pp.3038-3074, 2002.
- Gatto A., Thielsch R., Torchio Ph., Heber J., Kaiser N., Ristau D., Alvisi M., Amra C., et al., "High-performance deep-ultraviolet optics for free-electron lasers", Applied Optics, Vol.41, No.16, pp.3236-3241, 2002.
- Torchio Ph., Gatto A., Alvisi M., Albrand G., Kaiser N., Amra C.,, "High-reflectivity HfO2/SiO2 ultraviolet mirrors", Appied Optics, Vol.41, No.16, pp.3256-3261, 2002.
- Cathelinaud M., Lemarquis F., Amra C., "Index determination of opaque and semi transparent metallic films. Applications to light absorbers", Applied Optics, Vol.41, No., pp.2546-2554, 2002.
- Gatto A., Feigl T., Kaiser N., Garzella D., De Ninno G., Couprie M.E., Torchio Ph., Albrand G., Amra C., et al., "Multiscale degradations of Storage Ring FEL optics", Nuclear Instruments and Methods in Physics Research A (NIM-A), Vol.483, No., pp.172-176, 2002.
- Parmentier R., Lemarchand F., Cathelinaud M., Lequime M., Amra C., et al., "Piezoelectric Tantalum Pentoxide Studied for Optical Tunable Applications", Applied Optics, Vol.41, No.16, pp.3270-3276, 2002.
- Lequime M., Parmentier R., Lemarchand F., Amra C., "Towards Tunable Thin-Film Filters for Wavelength Division Multiplexing Applicationss", Applied Optics, Vol.41, No.16, pp.3277-3284, 2002.

- G. Soriano, M. Saillard, "Modelization of the scattering of electromagnetic waves form the ocean surface", Progress in Electromagnetic Research, à paraître en 2002.
- G. Soriano and M. Saillard and C.A. Guerin, "Scattering by two-dimensional rough surfaces: comparison between the Method of Moments, the Kirchhoff and the Small-Slope approximation", Waves in Random Media. vol 12, (janv.2002) pp.63-83.
- A. Sentenac, H. Giovannini, M. Saillard, "Scattering from rough inhomogeneous medi Splitting of surface and volume scattering", J. Opt. Soc. Am A, 19 (2002) pp. 727-736.
- H. Tortel, "Localization and Derivation of an Optimal Sphere for 3D Objects", A paraître dans JEWA, Vol.16, n 6, 771-791, 2002.
- 124 C.A. Guerin, "Scattering by rough surfaces with stable non-Gaussian height distribution", Waves in Random Media, (12), July 2002, p.293-306.
- E. Popov, B. Bozhkov, M. Neviere, "Almost perfect blazing by photonic crystal rod grating.", Appl. Opt.40, 2417-2422, 2001.
- N. Guérin, S. Enoch, G. Tayeb, "Combined method for the computation of the doubly periodic Green's function", J. of Electromagn. Waves and Appl., Vol. 15, n 2, 205-221, 2001.
- E.Popov, B. Bozhkov, "Corrugated waveguides as resonance optical filters advantages and limitations.", J.Opt. Soc. Am. A/Vol.18, n 17/July 2001.
- S. Enoch, G. Tayeb, D. Maystre, "Dispersion diagrams of Bloch modes applied to the design of directive sources", Progress in Electromagnetic Research, Special issue on "Electromagnetic Applications of PBG materials and Structures", Editors: T. Itoh et A. Priou, in press..
- A. Rahmani, P.C. Chaumet, F. de Fornel, "Environment-induced modification of spontaneous emission: Single-molecule near-field.", Phys. Rev. A 63 (2001) 023819.
- B.Chernov, M.Nevière, E.Popov, "Fast Fourier factorization method applied to modal analysis of slanted lameller diffraction gratings in conical mountings", Opt. Commun. 194,289-297,2001.
- A.L. Fehrembach, D. Maystre, A. Sentenac, "Filtering of unpolarized light by gratings", J. Opt. A: Pure Appl. Opt., special issue article, (2002) à paraître.
- 116 A.L. Fehrembach, S. Enoch, A. Sentenac, "Highly directive light-source using two-dimensional photonic crystal slabs", Applied Physics Letters, volume 79, number 26, 4280-4282.

- E. Popov, M. Neviere, "Maxwell equations in Fourier space: fast converging formulation for diffraction by arbitrary shaped, periodic, anisotropic media.", J. Opt. Soc. Am.18, 2886-2894, 2001.
- B. Gralak, G. Tayeb and S. Enoch., "Morpho butterflies wings color modeled with lamellar grating theory.", Optics Express 9, p.567-578, 2001.
- P.C. Chaumet, M. Nieto-Vesperinas, "Optical binding of particles with or without the presence of a flat dielectric surface.", Phys. Rev. B, vol 64, 035422 (2001).
- D. Maystre, "Photonic crystal diffraction gratings", Optics Express, Vol.8, n 3, 209-216, 2001.
- G.Zartov, T.Tenev, K.Panajotov, E.Popov, R. Peyeva, "Photorefractive beamfanning effect and self-pulsations in coated LiNbO3 slabs", J.OPT.Soc.Am.A, vol.18, n 7 July 2001.
- S. Darmanyan, M. Neviere, "Surface waves at the interface of quadratic nonlinear media.", Physics Letters A 281, 260-264, 2001.
- S.A. Darmanian and M. Neviere, "Dichromatic nonlinear eigenmodes in slab waveguide with nonlinearity.", Physical Review E, Vol. 63, à paraître.
- S. Enoch, R. C. McPhedran, N. A. Nicorovici, L. C. Botten and J. N. Nixon, "Sums of spherical waves for latticesSums of spherical waves for lattices, layers and lines", J. Math. Phys 42, 5859-5870 (2001).
- B. Stout, J.C. Auger, J. Lafait, "Individual and aggregate scattering matrices and cross sections: conservation laws and reciprocity", Journal of Modern Optics, Vol. 48, No. 14, 2105-2128.
- B. Stout, S. Stout, M. Neviere, "Photonic crystal waveguides: a one-dimensional model theory.", J. of Electromagn. Waves and Appl., Vol. 15, n 7, 961-988, 2001.
- J.C. Auger, B. Stout, R.G.Barrera, F. Curiel, "Scattering properties of rutile pigments located eccentrically within microvoids.", Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 15, n 7, pp. 961-988, 2001.
- 104 P.M. Adam, S; Benrezzak, J.L. Bijeon, P. Royer, S; Guy, B. Jacquier, P. Moretti, R. M. Montereali, M. Piccinini, F. Menchini, F. Somma, C. Seassal, H. Rigneault, "Fluorescence imaging of submicrometric lattices of colour centres in LiF by apertureless scanning near-field optical microscope", Optics Express, Vol. 9, pp. 353-359, 2001.
- O. Chambenoit, Y. Hamon, D. Marguet, H. Rigneault, M. Roseneu, G. Chimini, "Specific docking of alipoprotein A-I at the cell surface requires a functionnal ABCA1", J Biol Chem. Vol. 30, 276(13): 9955-60, 2001.

- A; Belarouci, F. Menchini, H. Rigneault, B. Jacquier, R. M. Montereali, F. Somma, P. Moretti, "Spontaneous emission properties of color centers based optical microcavities", Opt. Com. Vol. 189, pp. 281-287, 2001.
- Altmann S., Lenne P-F., Hörber J.K., "Multiple sensor stabilizatin system for local probe microscopes", Rev.Sci Instrum., Vol.72, No., pp.142-149, 2001.
- Bittebierre J., Lazaridès B.,, "Narrow-bandpass filters with broad rejection band for single-mode waveguide", Applied optics, Vol.40, No.1, pp.1-9, 2001.
- Jelinek M., Lancok J., Deineka A., Jastrabik L., Soukup L., Flory F., Escoubas L., "Optical and waveguiding properties of PLZT thin films deposited by laser ablation", Ferroelectrics, Vol.264, No., pp.267-272, 2001.
- Belarouci A., Jacquier B., Moretti P;, Robert S., Rigneault H.,,
 "Praseodymium-doped planar multidielectric microcavities: induced lifetime
 changes over the emission spectrum", J. Opt. Soc. Am. B, Vol.18, pp.832-838,
 2001.
- 97 Bittebierre J., Lazarides B.,, "Bicorn filters for single-mode waveguides", Applied Optics, Vol.40, No.28, pp.5028-5033, 2001.
- F. Bonfigli, B. Jacquier, R. M. Montereali, P. Moretti, M. Piccinini, H. Rigneault, F. Somma, "Color center luminescence decay times in optical microcavities based on LiF films", Journal of luminescence, Vol. 94-95, pp. 811-814, 2001.
- Escoubas L., Drouard E., Flory F., "Designing waveguide filters with optical thin-film computational tools", Optics Communications, Vol.197, No., pp.309-316, 2001.
- Belarouci A., Menchini F., Rigneault H., Jacquier B., Cathelinaud M. et al., "Control of F2 color centers spontaneous emission in LiF thin films inside optical microcavities", Opt. Materials, Vol.16, pp.63-67, 2001.
- Escoubas L., Flory F., Lemarchand F., Drouard E., Roux L., Tisserand S., Albrand G., "Fabry-Perot multilayers for enhancing the diffraction efficiency of ion-implanted gratings", Applied Optics, Vol.40, No.10, pp.1587-1592, 2001.
- Derrode S., Ghorbel F., "Motion parameter estimation and symmetry detection in gray-level objects using the analytical Fourier-Mellin representation.", Soumis à la revue Signal Processing, October 2002, Vol., No., pp., 2001.
- Derrode S., Ghorbel F., "Robust and efficient Fourier-Mellin transform approximations for invariant grey-level image description and reconstruction", Computer Vision and Image Understanding., Vol. 83, No.1, pp. 57-78, 2001.
- Destouches N., Guerin Ch.A., Lequime M., Giovannini H.,, "Determination of the phase of the diffracted field in the optical domain Application to the

- reconstruction of surface profiles", Optics Communications, Vol.198, No.4-6, pp.233-239, 2001.
- Destouches N., Giovannini H., Lequime M., "Interferometric measurement of the phase of diffracted waves near the plasmon resonances of metallic gratings", Applied Optics, Vol.40, No.31, pp.5575-5582, 2001.
- Gatto A., Commandré M.,, "Multiscale mapping technique for the simultaneous estimation of absorption an partial scattering in optical coatings", Applied Optics, Vol.41, No.1, pp.225-234, 2002.
- 67 Gervaise C., Gagliano O., Serra J-J, Commandré M., al., "Local thermal characterization of inner gun tube refractory metallic coatings", Microscale Thermophysical Engeenering, Vol.5, No., pp.209-223, 2001.
- N. Destouches, M. Lequime and H. Giovannini and C.A. Guerin, "Determination of the phase of the diffracted field in the optical domain. Application to the reconstruction of surface profiles", Opt. Comm. vol. 198, pp. 233-239, 2001.
- Garcia J., Pagé O., Réfrégier Ph., "Detection of multiregions objects embedded in non-overlapping noise.", Optics Letters., Vol.26, No.18, pp.1394-1396, 2001.
- Germain O., Réfrégier Ph., "Edge location in SAR images: performance of the likehood ratio filter and accuracy improvement with an active contour apProch.", IEEE Trans. on Image Processing., Vol.10, No.1, pp.72-78, 2001.
- Garcia-Martinez P., Refregier Ph., Arsenault H, Ferreira C., "Maximum likelihood for target location in the presence of substitutive noise .", Applied Optics-IP., Vol.40, No.23, pp.3855-3860, 2001.
- Ruch O., Réfrégier Ph., "Minimal complexity segmentation with a polygonal snake adapted to different optical noise models.", Optics Letters., Vol.26, No.13, pp.977-979, 2001.
- Hueber E, Bigué L., Réfrégier Ph., Ambs P., "Optical snake-based segmentation processor using a shadow casting incoherent correlator.", Optics Letters., Vol.26, No.23, pp.1852-1854, 2001.
- Germain O., Réfrégier Ph., "Statistical active grid for segmentation refinement.", Pattern Recognition Letters., Vol.22, No., pp.1125 –1132, 2001.
- Goudail F., Réfrégier Ph., "Statistical algorithms for target detection in coherent active polarimetric images.", JOSA A., Vol.18, No.12, pp.3049-3060, 2001.
- Goudail F., Réfrégier Ph., "Statistical techniques for target detection in polarisation diversity images.", Optics Letters., Vol.26, No.9, pp.644-646, 2001.

- Riaud P., Boccaletti A., Rouan D., Lemarquis F., Labeyrie A.,, "The four-quadrant phase-mask coronagraph. II. Simulations", Publ. Astron. Soc. Pac. Vol. 113, pp. 1145-1154; 2001.
- C.A. Guerin, "A note on the generalized fractal dimensions of a probability measure.", Journ. Math. Phys., december 2001.
- C.A. Guerin, M. Saillard, "Electromagnetic scattering on fractional Brownian surfaces and estimation of the Hurst exponent", Inverse Problems 17 (2001) 365-386.
- K. Belkebir, A.G. Tijhuis, "Modified2 gradient and modified Born method for solving a two-dimensional inverse scattering problem.", Inverse Problems, Vol.17, 1671-1688, 2001.
- A.G. Tihjius, K. Belkebir, A.C.S. Litman, B.P. de Hon, "Multiple-frequency distorted-wave Born apProch to 2D inverse profiling.", Inverse Problems, Vol.17, pp. 1635-1644, 2001.
- M. Saillard, A. Sentenac, "Rigourous solution for electromagnetic scattering from rough surfaces.", Waves in Random Media, 11, 2002.pp. 103-137.
- G. Soriano, M. Saillard, "Scattering of electromagnetic waves from two-dimensional rough surfaces with impedance approximation", JOSA, 2001, Vol. 18, n 1, 124-133.
- K. Belkebir, M. Saillard, "Special section on: Testing inversion algorithms against experimental data.", Inverse Problems, Vol. 17, pp. 1565-1571, 2001.
- A.G. Tijhuis, K. Belkebir, A.C.S. Litman, B.P. de Hon, "Theoretical and computational aspects of two-dimensional inverse profiling.", IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 6, pp. 1316-1330, 2001.
- P. Sabouroux et J.L. Pere, "Transmission optique en espace libre d'un signal hyperfréquence analogique", European Test and Telemetry Conference, Proceedings pp 229-232, Marseille, juin 2001.
- B. Gralak, S. Enoch, S. Tayeb, "Anomalous refractive properties of photonic crystals", J. Opt. Soc. Am. A, 17, 6, p. 1012-1020, 2000.
- M. Bagieu and D. Maystre, "Axis expansion method for nearly twodimensional objects", Progress in Electromagnetic Research, 26, 113-13, 2000.
- E. Popov, M. Neviere, "Differential theory for diffraction gratings: a new formulation for TM polarization with rapid convergence", Optics Letters, 2000, 25, 9, 598-600.

- S.A. Darmanyan, M. Neviere, "Eigenmodes of waveguides with quadratic non linearity", Optics Communications, 2000, 176, 231-237.
- B. Gralak et D. Maystre, "Electromagnetic phenomenological study of photonic band structures", Journal of Modern Optics, 47, 7, 1253-1272, 2000.
- E. Popov, M. Neviere, "Grating theory: new equations in Fourier space leading to fast converging results for TM polarization", J. Opt. Soc. Am A, 2000, 17, 10, 1773-1784.
- S. Guenneau, F. Zolla, "Homogenization of three-dimensional finite photonic crystals", Electromagnetics Research 27, 2000, p. 91-127.
- S. Bonnard, P. Vincent, M. Saillard, "Inverse obstacle scattering for homogeneous dielectric cylinders using a boundary finite-element method", J. Opt. Soc. Am A, 2000, 17, 10, 1773-1784.
- S. Bonnard, P. Vincent, M. Saillard, "Inverse obstacle scattering for homogeneous dielectric cylinders using a boundary finite-element method", IEEE Trans. Antennas and Propag. 48, 3, 2000, p.393-400.
- S.A. Darmanyan, E. Popov, M. Neviere, "Nonlinear prism coupler: approximate theory and comparison with rigourous analysis", J. of Electromagnetic Waves and Applications, 2000, 14, 383-399.
- M. Saillard, P. Vincent and G. Micolau, "Reconstruction of buried objects surrounded by small inhomogeneities", Inverse Problems, 16, n 5, 2000, p.1195-1208.
- A. Sentenac, Ph. Lalanne, D. Maystre, "Symmetry properties of the field transmitted by inductive grids", Journal of Modern Optics, 2000, 47, 13, 2323-2333.
- E. Popov, M. Neviere, S. Enoch, R. Reinisch., "Theory of light transmission through subwavelength periodic hole arrays", Physical review B, 62, 23, p. 16100-16108, 2000.
- Lenne P-F., Raae A.J., Altman S.M., et al., "States and transitions during forced unfolding of a single spectrin repeat", FEBS Letters, Vol.476, No., pp.124-128, 2000.
- H. Rigneault, J. Broudic, B. Gayral, J. M. Gérard, "Far-field radiation from quantum boxes located in pillar microcavities", Optics Letters, Vol. 26, Issue 20, pp. 1595-1597, 2001.
- Begon C., Rigneault H., Jonsson P., Rarity J.G.,, "Spontaneous emission control with planar dielectric structures: an asset for ultrasensitive fluorescence analysis", Single Molecules, Vol.1, No., pp.207-214, 2000.

- Rigneault H., Lemarchand F., Sentenac A., "Dipole radiation into grating structures", J. Opt. Soc. Am., Vol.A 17, No., pp.1048-1058, 2000.
- Escoubas L., Flory F., Lemarchand F., During A., Roux L., "Enhanced diffraction efficiency of gratings in multilayers", Optics Letters, Vol.25, No.4, pp.194-196, 2000.
- Monneret S., Huguet-Chantôme P., Flory F.,, "m-lines technique: prism coupling measurement and discussion of accuracy for homogeneous waveguides", J. Opt. A: Pure Appl.Opt., Vol.2, No.3, pp.188-195, 2000.
- Derrode S., Ghorbel F., "Comparaison de deux familles complètes de descripteurs de formes pour l'indexation de bases d'objets 2D à niveaux de gris.Annals of Telecommunications", Vol.55, No.3.4, pp.184-193, 2000.
- Bendjama A., Bourennane S., Sessarego J.P., "Estimation of direction of arrival of acoustic wide band sources.", EC Underwater Acoustics., Vol.2, No., pp.1001-1006, 2000.
- Bourennane S., Bendjama A., "Identification of the radiating sources in underwater acoustics.", Journal of the Acoustical Society of America (JASA),, Vol.105, No.2, pp., 2000.
- Bourennane S., "Localization method based on the higher order statistics.", JASA., Vol.107, No.5, pp., 2000.
- Bendjama A., Bourennane S., "Localization of the sources using identification of signal subspace.", Journal of the Acoustical Society of America (JASA)., Vol.105, No.2, pp., 2000.
- Campos J., L'Hostis S., Guillaume M., "Optimal multichannel estimation for location of a target with non-overlapping noise.", J. Opt. Soc. Am. A., Vol.17, No.11, pp., 2000.
- Bourennane S., Bendjama A., "Fast Method for Tracking Parameters Estimation of Correlated Signals. IJCR.", A paraître IJCR., Vol., No., pp.,.
- Kadkhoda P., Amra C., Bennett J.M., Deumié C., Duparré A., et al., "International round-robin experiment to test the ISO Total scattering draft standard", Applied Optics, Vol.39, No.19, pp.3321-3332, 2000.
- Goudail F., Ruch O., Réfrégier Ph., "Deconvolution of several versions of a scene perturbed by different defocuses blurs: influence of the kernel diameters on the resoration quality and on the robustness to kernel estimation.", Applied Optics., Vol.39, No., pp.6602-6612, 2000.
- Germain O., Réfrégier Ph., "On the bias of the Likelihood Ratio edge detector for SAR images.", IEEE Trans. on Geoscience and Remote Sensing., Vol.38, No.3, pp.1455-1458, 2000.

- Pagé V., Goudail F., "Phase encoding the input scene of an optical correlator in the presence of nonoverlapping noise.", Optics Communication., Vol.175, No.(1-3), pp.57-66, 2000.
- 37 K. Belkebir, S. Bonnard, F. Pezin, P. Sabouroux, M. Saillard, "Validation of 2D inverse scattering algorithms from multi-frequency experimental data", JEMWA, 2000, 14, p.1639-1670.
- 36 C.A. Guerin, "Wavelet analysis and covariance structure of some classes of nonstationary processes", J. Fourier Anal. Appl. 6(4), 2000.
- M. Bagieu, D. Maystre, "Regularized Waterman and Rayleigh methods: extension to two-dimensional gratings", J. Opt. Soc. Am. A, 1999, 16, 2, 284-292.
- E. Popov, B. Bozhkov, D. Maystre, J. Hoose, "Integral method for echelles covered with lossless or absorbing thin dielectric layers", Applied Optics, 1999, 38,1, 47-55.
- M. Neviere, E. Popov, B. Bojkhov, L. Tsonev, S. Tonchev, "High-accuracy translation-rotation encoder with two gratings in Littrow mount", Appl. Opt., 1999, 38, 1, 67-76.
- M. Bagieu and D. Maystre, "Diffraction by nearly two-dimensional objects", Journal of Optics A: Pure and Applied Optics, 1 (1999) 537-544.
- S. Bonnard, M. Saillard, P. Vincent, "Improved inverse scattering for dielectric homogeneous cylinders", Journal of Optics A: Pure and Applied Optics, 1999, 1, 566-572.
- P. Sabouroux, G. Tayeb, D. Maystre, "Experimental and theoretical study of resonant microcavities in two-dimensional photonic crystals", Optics Commun. 160 (1999) 33-36.
- S. Enoch, G. Tayeb, D. Maystre, "Numerical evidence of ultrarefractive optics in photonic crystals", Opt. Commun. 161, 171-176, 1999.
- S. Enoch, H. Akhouayri, C. Deumier, C. Amra, "Second-harmonic scattered light from a zinc sulfide thin film.", Opt. Commun. 161, 177-181, 1999.
- A. M. Kamchatnov, M. Neviere, A.D. Boardman, V.M. Agranovich, "Derivative quadratic nonlinearity and cascaded solitons in quasi-phase-matched waveguide systems", Nonlinear Guided Waves and Applications, OSA Technical Digest (Optical Society of America, Washington D.C.), 1999, p.337-338.
- M. Léonetti, G. Renversez and E. Dubois-Violette, "Influence of specific ionic diffusion on the protein self-aggregation instability", Europhysics Letters, 46(1), p. 107-113, 1999.

- S. Enoch, H. Akhouayri, C. Deumié, C. Amra, "Second-harmonic scattered light from a zinc sulfide thin film.", Opt. Commun. 161, 177-181, 1999.
- 24 H. Rigneault, F. Lemarchand and A. Sentenac, "Dipole radiation into gratings structure", J. Opt. Soc. Am. A 17 1048.
- F. Lemarchand, A. Sentenac, E. Cambril and H. Giovannini, "Study of the resonant behavior of waveguide gratings: Increasing the angular tolerance of guided-mode filters", Journal of Optics A: Pure and Applied Optics, Special issue on Electromagnetic Optics 1, 545-551.
- H. Rigneault, F. Lemarchand, A. Sentenac and H. Giovannini, "Extraction of light from sources located inside waveguide grating structures", Optics Letters 24, 148-150, 1999.
- A. Belarouci, F. Menchini, B. Jacquier, P. Moretti, H. Rigneault, S. Robert, "Luminescence properties of Pr3+doped optical microcavities", J. of Luminescence, Vol.83-84, pp.275-282, 1999.
- J. Massaneda, F. Flory, E. Pelletier, "Determination of the refractive index of layers in a multilayer stack by guided wave technique", Applied Optics, Vol., No., pp., 1999.
- Rigneault H., Lemarchand F., Sentenac A., Giovannini H., "Extraction of light sources located inside waveguide grating structures", Optics Letters, Vol.24, No., pp.148-150, 1999.
- Rigneault H., Robert S., Begon C., Lamarque F., Jacquier F., Moretti P., Jurdyc A.M., Belarouci A., "Spontaneous emission intoplanar multi-dielectric microcavities: Theorical and experimental analyses of rare earth ion radiations", Optical Materials, Vol.11, No., pp.167-180, 1999.
- Rigneault H., Lemarchand F., Sentenac A., Giovannini H., "Strong extraction coefficient for sources located inside waveguide grating structures", Journal of Optics A: Pure and Applied Optics, Special issue on Electromagnetic Optics, Vol.1, No., pp.507-511, 1999.
- Lancok J., Jelinek M., Grivas C., Flory F., Lebrasseur V, Garapon C., "Structural and optical characterisation of Nd doped YALO3 films deposited on sapphire substrate by pulsed laser deposition", Thin Solid Films, Vol.1-6, No., pp.39-44, 1999.
- Lemarchand, A. Sentenac, E. Cambril, H. Giovannini,, "Study of the resonant behavior of waveguide gratings: increasing the angular tolerance of guided-mode filters", Journal of Optics A, Pure and applied optics, Special issue on Electromagnetic Optics, Vol.1, No., pp.545-551, 1999.
- Rigneault H., Amra C., Begon C., Cathelinaud M., Picard C., "Light emission for sources located within metalodielectric planar microcavity", Appl. Opt., Vol.38, No.16, pp.3602-3609, 1999.

- Begon C., Rigneault H., Albrand G., Bois E., Nuti D., Sermet F., "Thin film luminescence under UV irradiation", Applied Optics, Vol.38, No.25, pp.5458-5463, 1999.
- Guillaume, M., Campos J., Lashin V., "Pattern location estimation for multichannel images.", OPTICS COMMUNICATIONS., Vol.165, No., pp.107-118, 1999.
- 11 Réfrégier Ph., "Bayesian theory for target location in noise with unknown spectral density.", Journal of Optical Society of America A, Vol.16, No.2, pp.276-283, 1999.
- Sjöberg H., Goudail F., Réfrégier Ph., "Comparison of the maximum likelihood ratio test algorithm and linear filters for target location in binary images.", Optics Communication., Vol.163, No., pp.252-258, 1999.
- Pagé V., Goudail F., Réfrégier Ph., "Improved robustness of target location in nonhomogeneous backgrounds by use of the maximum-likelihood ratio test location algorithm.", Optics Letters., Vol.24, No.20, pp.1383-1385, 1999.
- 8 Germain O., Réfrégier Ph., "Snake-based method for the segmentation of objects in multichannel images degraded by speckle.", Optics Letters., Vol.24, No.12, pp.814-816, 1999.
- Chesnaud C., Réfrégier Ph., Boulet V., "Statistical region snake based segmentation adapted to different physical noise models.", IEEE Transactions on Pattern Analysis and Machine Intelligence., Vol.21, No.11, pp.1145-1157, 1999.
- 6 Lemarquis F., Marchand G., "Analytical achromatic design of metal dielectric absorbers", Applied Optics, Vol.38, No.22, pp., 1999.
- F. Lemarquis, G. Marchand, C. Amra, "Infrared optical filters for the Infrared Atmospheric Sounding Interferometer meteorological space instrument", Appl. Opt., Vol.38, No.19, pp., 1999.
- 4 H. Tortel, G. Micolau, M. Saillard, "Decomposition of the time reversal operator for electromagnetic scattering", J. of Electr. Waves and Appl., n 13, p.687-719, 1999.
- O. Calvo-Perez, A. Sentenac and J.-J. Greffet, "Scattering by randomly rough dielectric surfaces and rough dielectric films: Influence of the height distribution", Journal of Optics A: Pure and Applied Optics, Special issue on Electromagnetic Optics 1, 560-565.
- Calvo-Pérez O., Greffet J. J., Sentenac A., "Scattering by randomly rough dielectric surfaces and rough dielectric films: Influence of the height distribution", Journal of Optical A: Pure and Applied Optics Special issue of in electromagnetic optics, Vol.1, No., pp.560-565, 1999.

O. Calvo-Pérez, A. Sentenac, J. J. Greffet,, "Light scattering by a two-dimensional, rough penetrable medium: A mean-field theory", Radio Science, Vol.34, No., pp.311-335, 1999.

XIX.2. Conférences dans congrès internationaux avec actes

- B. Gralak, G. Tayeb, S. Enoch, E. Popov, "Color rendering techniques applied to the study of butterflies wings", OSA Topical Meeting, Diffractive Optics & Micro-Optics, June 2002, Tucson, USA.
- G. Tayeb, S. Enoch, P. Sabouroux, N. Guérin, P. Vincent, "Compact directive antennas using metamaterials.", JINA 2002, nov.2002.
- N. Guérin, P. Sabouroux, S. Enoch, G. Tayeb, P. Vincent, "Étude et réalisation d'antennes directives", Actes des 7èmes Journées de Caractérisation Microondes et Matériaux, Toulouse, mars 2002, p.163-166.
- B. Gralak, S. Enoch, G. Tayeb, "Radiating dipoles in woodpile and simple cubic structures. Photonic Bandgap Materials and Devices", Editors A. Adibi, A. Scherer, S.Y. Lin, Proceedings of SPIE, vol. 4655, p.241-250, Jan. 2002.
- D.N. Chigrin, S. Enoch, C.M. Sotomayor Torres and G. Tayeb, "Self-guiding in two-dimensional photonics crystals. Photonic Bandgap Materials and Devices", Editors A. Adibi, A. Scherer, S.Y. Lin, Proceedings of SPIE, vol. 4655, p.63-72, Jan. 2002.
- B. Kuhlmey, G. Renversez, and D. Maystre, "Rigorous electromagnetic theory of microstructured optical fibres", In JEE'02, European Symposium on Numerical Methods in Electrognetics}, pages 193--198, 2002.
- B. Kuhlmey, G. Renversez, D. Maystre, T. White, R. McPhedran, L. Botten, and M. de Sterke, "Multipole study of dispersion and losses of photonic crystal fibres", In SPIE Proceedings, 2002.
- 99 S. Guenneau, S. Lasquellec, A. Nicolet, F. Zolla, "Design of photonic band gap optical fibers using finite elements", présenté au TEAM Workshop and Application Forum, Evian, July 6, proceedings, pp.38-39, à paraître dans COMPEL.
- A. Nicolet, "Analogy between the finite element method and the circuit equations", EPNC, 2002.
- A. Nicolet, S. Guenneau, Ch. Geuzaine, F. Zolla, "Modeling of electromagnetic waves in periodic media with finite element", présenté à la conférence ACOMEN 2002, Liége, Belgique, mai 2002.
- Escoubas L., Drouard E., Flory F., "Modeling of optical guided wave filters", SPIE, Vol.4640, No., pp., 2002.
- 95 Flory F., Escoubas L., Drouard E., "Study of the refractive index of nanostructured optical materials", SPIE, Vol.4640, No., pp., 2002.

- Derrode S., Pieczynski W., "SAR image segmentation using generalized pairwise Markov chains.", 9th International Symposium on Remote Sensing (SPIE RS), 23-27 September 2002, Capsis Sofitel Conference, Crete, agia Pelagia, Greece., Vol., No., pp., 2002.
- Derrode S., Ghorbel F., "Shape distance for rotational estimation and rotation symmetry detection in gray-level images.", XI European Signal Processing Conference (EUSIPCO'02), Volume III, pp. 543-546, September 3-6, Toulouse (France), 2002..
- F. Bonneau, P. Combis, J. L. Rullier, M. Pellin, M. Savina, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignère, M. Loiseau, "Using a TOF mass spectrometer for studies of laser interaction with 3 nm diameter gold nanoparticles embedded in silica", Conf. 34th Annual symposium on optical material for high power lasers", Boulder, Colorado, USA, 18-20 Sept., 2002, a paraître dans SPIE n?, pages?
- Gallais L., Amra C., Natoli J-Y., "Calculated and measured thermally laser damage in metallic thin films, as a function of pulse duration", Conf. 34th "Annual symposium on optical material for high power lasers", Boulder, Colorado, USA, 18-20 Sept., 2002 (a paraître dans SPIE n?, pages?).
- F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, L. Gallais, J. Y. Natoli, H. Bercegol, L. Lamaignère, P. Bouchut, "Comparison of numerical simulations with experiment on generation of craters in silica by laser", Conf. 34th "Annual symposium on optical material for high power lasers", Boulder, Colorado, USA, 18-20 Sept., 2002, a paraître dans SPIE n?, pages?
- J. Y. Natoli, L. Gallais, H. and C. Amra, "Detection of nano-defects in different glasses for bulk and surfaces using laser damage investigations", Proceeding of 2002 Glass Odyssey 6th ESG Conference June 2-6, 2002 Montpellier (CD-ROM)..
- During A., Fossati C., Commandré M., "Development of a photothermal deflection microscope for multiscale studies of defects Annual symposium on optical material for high power lasers", Laser-induced damage in optical materials: 2001, proceedings of SPIE 4679, pp.400-410,2002.
- J. Y. Natoli, L. Gallais, M. Perra, F. Bonneau, P. Combis, J. L. Rullier, P. Bouchut, L. Lamaignère, "Experimental results of laser interaction with included gold particles in silica at 1w and 3w", Conf. 34th"Annual symposium on optical material for high power lasers", Boulder, Colorado, USA, 18-20 Sept., 2002 (a paraître dans SPIE n?, pages?).
- H. Bercegol, F. Bonneau, P. Bouchut, P. Combis, J. Donohue, L. Gallais, L. Lamaignère, C. Le Diraison, M. Loiseau, J. Y. Natoli, C. Pellé, M. Perra, J. L. Rullier, J. Vierne, H. Ward, "Laser ablation of fused silica induced by gold nano-particles: Comparison of simulations and experiments at 351 nm", SPIE vol 4760 Conference Hight-Power Laser Ablation 2002 Taos-New Mexico USA 21-26 April 2002.

- J. Y. Natoli, L. Gallais, B. Bertussi, "Toward an absolute measurement of Laser Induce Damage Threshold", Conf. 34th "Annual symposium on optical material for high power lasers", Boulder, Colorado, USA, 18-20 Sept., 2002, a paraître dans SPIE n?, pages?.
- Galland F., Bertaux N., Réfrégier Ph, "Merge, Move and Remove MDL based segmentation for synthetic aperture radar images.", Advanced Concepts for Intelligent Vision Systems. September 9-11, 2002, Ghent Univ, Belgium., 2002.
- H. Tortel, M. Saillard, "Shape Reconstruction of 3D perfectly conducting object", URSI General Assembly, 2002, (Maastricht).
- S. Enoch, E. Popov, and M. Nevière, "3-D photonic crystals dispersion relation: improved convergence using fast Fourier factorization (FFF) method", Physics, Theory and Applications of Periodic. Structures in Optics", P. Lalanne ed., vol. 4438, p.183-190, (SPIE, Bellingham, USA), 2001.
- S. Guenneau, A. Nicolet, F. Zolla, C. Geuzaine, B. Meys, "A Finite Element Formulation for Spectral Problems in Optical Fibers", COMPEL, The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 20, No. 1, pp. 120-131, 2001.
- E. Popov and M. Nevière, "Arbitrary shaped, periodic, anisotropic media: new presentation of Maxwell equations in the truncated Fourier space", Physics, Theory and Applications of Periodic Structures in Optics", P. Lalanne ed.,4438,19-30, (SPIE, Bellingham, USA, 2001).
- E. Popov and J. Hoose, "Light demultimplexong by using diffraction gratings: importance of electromagnetic effects", Proc. SPIE 46th Annual Meeting, San Diego 2001.
- E. Popov, M. Nevière, and B. Bozhkov, "Light demultiplexing by photonic crystal grating", in "Physics,Theory and Applications of Periodic Structures in Optics", P. Lalanne ed.,4438,77-83 ,(SPIE,Bellingham,USA,2001).
- G. Tayeb., S. Enoch., N. Guérin, P. Vincent, "Study of Photonic Crystal Based Directive Antennas", 24th ESTEC Antenna Workshop on Innovative Periodic Antennas: Photonic Bandgap, Fractal and Frequency Selective Structures, Noordwijk (Netherlands), ESA-WPP-185, p.11-16, 2001.
- E. Popov, M. Nevière, S. Enoch, and R. Reinisch, "Sub-wavelength hole array enhanced light transmission", in "Physics, Theory and Applications of Periodic Structures in Optics", P. Lalanne ed.,4438,69-75 (SPIE, Bellingham, USA, 2001).
- E. Popov, M. Nevière, B. Gralak, and G. Tayeb, "The classical differential method, the rigorous coupled wave theory, and the modal method: comparative analysis of convergence properties in staircase approximation", in

- "Physics, Theory and Applications of Periodic Structures in Optics", P. Lalanne ed., vol. 4438, p. 12-18 (SPIE, Bellingham, USA), 2001.
- B. Kuhlmey, D. Maystre, and G. Renversez, "Photonic crystals: modal theory of pc optical fibers and numerical application", 3rd International ISAAC Congress, 2001. Freie Universitaet Berlin, August 2001.
- Nicolas Guérin, Stefan Enoch, Gérard Tayeb, Patrick Vincent, "Green's function for biperiodic gratings. Application to the study of directive antennas using metallic photonic crystals properties", Proceedings of OHD 2001, 201-204 (2001).
- B. Kuhlmey, G. Renversez, and D. Maystre, "Modeling of photonic crystal fibers", In J.J. Greffet, editor, Electromagnetic Optics 2, page~66. Laboratoire {EM2C} and Ecole Centrale de Paris, august 2001.
- H. Rigneault, P.F. Lenne, H. Giovannini, "Fluorescent Correlation Spectroscopy with sub-wavelength photonic structures", 7th international Wokshop on "Single Molecule Detection and Ultra Sensitive Analysis in the Life Sciences" PicoQuant, Berlin, September, 2001.
- H. Rigneault, "Détection optique de molécules biologiques individuelles", Les transversales du CNRS juin 2001.
- 69 Lancok J., Jelinek M., Escoubas L., Flory F., "Structural and optical properties of PLZT thin films deposited by PLD", SPIE, Vol.4397, No., pp.305-308, 2001.
- Rigneault H., Broudic J., Gayral B., Gérard J.M., "Fard-field radiation from quantum boxes located in micropillars", International quantum Electronics Conference, Nice, 10-15 sept., 2000.
- Bourennane S., Bendjama A., Costa B., "Blind estimation of source parameters.", CDROM, Inter-noise 2001, the Hague, Holland, August 2001., Vol., No., pp., 2001.
- Guillaume M., Campos J., Guillou J., "Influence of the multichannel model on the location estimation of a target.", Physics in Signal and Image Processing PSIP'2001,pp187-190, Marseille, 23-24 January, 2001.
- Bourennane S., Bendjama A., "Méthodes de traitement d'antenne pour la caractérisation d'objets en mouvement à partir d'une séquence d'images.", CDROM GRETSI'01, Toulouse, 10-13 septembre 2001, article 363., Vol., No., pp., 2001.
- Bendjama A., Bourennane S, "Panorama des opérateurs de focalisation et applications.", CDROM GRETSI, Septembre 2001., Vol., No., pp., 2001.

- Derrode S., Mercier G., Lecaillec JM., Garello R., "Estimation of sea-ice SAR clutter statistics from Pearson system distributions.", IGARSS, Sydney (Australia), 9-13 juillet 2001.
- Mezhoud R., Hamida L.B., Derrode S., Mhiri S., Ghorbel F., "Nouvelle approche d'indexation de bases d'images par le contenu.", 7ème journées d'étude et d'échange CORESA'01, Palais des Congrès de Dijon, 12-13 nov 2001.
- Natoli J.Y., Gallais L, Akhouayri H., Amra C., "A quantitative study of laser damage probabilities in silica and calibrated liquids:comparison with theoretical prediction", Proc. SPIE, Vol.4347, No., pp.295-305, 2001.
- 60 Chow R., Taylor, J.R., Wu,Z.L., Boccara C., Broulik C., Commandré M. et al., "Absorptance measurements of optical coatings- A Round Robin", Proc. Laser-induced Damage in Optical Matérials, Vol.4347, No., pp.62-73, 2001.
- Gagliano O., Serra J-J., Bénet S., Commandré M., "Caractérisation thermophysique à micro-échelle de revêtements métalliques", Actes des journées SFT, Paris, Vol., No., pp., 2001.
- Gallais L., Natoli J-Y., Akhouayri H., "CW and nano-second laser irradiation on materials: elements of comparison of thermal effects", Conf. 32th "Annual symposium on optical material for high power lasers", Boulder, Colorado, USA, October, 2000; SPIE, Vol.4347, No., pp.502-508, 2001;
- Natoli J.Y., Deumié C., Amra C., "Laser-Modulated Scattering from optical surfaces using faber detection", SPIE, Vol.3902, No., pp.128-137, 2001.
- Gagliano O., Commandré M., Suzanne P., Serra J-J., Claudet B.,, "Mesure des propriétés thermiques des revêtements métalliques réfractaires à microéchelle, par une technique de photoréflexion modulée", Actes du Coloque "Contrôles et Mesures Optiques pour l'Industrie" Tregastel, Vol., No., pp., 2001.
- Amra C., Deumié C., Natoli J.Y., Commandré M.,, "Topographie multi-échelle pour le filtrage optique multicouche large-bande", J. Phys. IV France, Vol.11, No., pp.Pr7-53 Pr7-56, 2001.
- Ruch O., Réfrégier Ph., "Characterization of the recognition and the identification capabilities of the statistical snake at low resolution and high noise levels in speckled images.", Proc. SPIE Optical Pattern Recognition XII., Vol.4387, No., pp.152-163, 2001.
- Ruch O., Réfrégier Ph., "Comparison of Hausdorff distances performances in dissimilarity measurements for silhouette discrimination.", Proc. SPIE Automatic Target Recognition XI., Vol.4379, No., pp.454-465, 2001.

- Réfrégier Ph., Goudail F., "Définition d'un contraste dans les images polarimétriques actives en lumière cohérente.", Conférence OPTIX 2001, 26-28 Novembre 2001., Vol., No., pp., 2001.
- Goudail F., Réfrégier Ph, "Improving target detection in active polarimetric images.", Proc. SPIE Optical Pattern Recognition XII., Vol.4387, No., pp.140-151, 2001.
- Goudail F., Pagé V., Réfrégier Ph., "Improving target detection with polarization diversity images.", Second Symposium on Physics in Signal and Image Processing., P 340-345, 2001.
- Goudail F, Réfrégier Ph., "Target detection and segmentation in coherent active polarimetric images.", Conférence ICIP., p 632-635, 2001.
- Torchio Ph., Ottaviani L., Lazar M., Locatelli M.L. et al., "Annealing studies of AI-Implanted 6H-SiC in an induction fumace", Defects Recognition, Imaging and Physics in Semiconductors (DRIP IX: Ninth International Conference, Rimini (Italy), 24-28 September, 2001.
- G. Micolau, H. Tortel, M. Saillard, "Decomposition of the time reversal operator (DORT) method as applied to detection of buried objects", Proceedings of the PSIP 2001 Conference (Physics in Signal & Image Processing), pp.69-74.
- 46 C.A. Guerin, M. Saillard, "On estimating the Hurst exponent of a fractional Brownian surface from scattering data surfaces.", Proceedings of the PSIP 2001 Conference (Physics in Signal & Image Processing), pp.105-110.
- R. Grange, B. Milliard, J. Flamand, A. Pauget, G. Waultier, G. Moreaux, C. Rossin, M. Neviere, "Galex UV grism for slitless spectroscopy survey", Proceedings International Conference on space Optics ICSO, 5-7 déc. 2000, Toulouse.
- S. Guenneau, A. Nicolet, F. Zolla, "Numerical and Theoretical Analysis of Photonic Crystal Fibers", PIERS 2000, Boston, juillet 2000 et contribution pour le livre PIER 2000 à paraître (ed. A. Priou).
- C. Begon, F. Lemarchand, H. Rigneault, J. Rarity, "Increasing light collection efficiency in ultrasensitive fluorescence analysis with dielectric mirrors and micro-structures", 6th International Workshop on Single Molecule Detection and Ultrasensitive Analysis in Life Sciences, Berlin, 27-29 sept, 2000.
- Flory F., Huguet-Chantôme P., Escoubas L., Monneret S., "Study of refractive index modifications and of thermal properties of optical thin films with the prisme coupler", Proc. SPIE, Vol.4086, No., pp.786-790, 2000.
- Escoubas L., Flory F., Lemarchand F., Roux L., Albrand G., "Gratings in resonant multilayer structures", Proc. SPIE, Vol.4086, No., pp.338-343, 2000.

- Guillaume M., Campos J., "Optimal target location in multichannel images .", Proceedings of the First Internationnal Workshop on Image and Signal Processing and analysis Conférence IWISPA 2000, pp 101-106, Pula, Croatia, 15-16 juin, 2000.
- Bendjama A., Bourennane S., "Blind focusing wide band array processing.", CDROM EUSIPCO 2000, papier n 123, Septembre 2000., Vol.2, No., pp., 2000.
- Dalle Mese E., Gini F., Montanari M., Verrazzani L., Bourennane S., "Frequency Estimation of Radar/Sonar Signals Against Correlated Non-Gaussian Noise.", European Signal Processing Conference, EUSIPCO, Tampere, Finland, September 2000., Vol., No., pp.171/1-171/4, 2000.
- Bourennane S., Costa B., Montanari M., Gini F., Dalle Mese E., "Wideband Signal Parameter Estimation Based on Higher-Order Statistics.", European Signal Processing Conference, EUSIPCO, Tampere, Finland, September 2000., Vol., No., pp.171/1-171/4, 2000.
- Ghorbel F., Chakchouk M., Derrode S., "Comparaison de descripteurs locauxglobaux pour l'indexation d'images à niveaux de gris", 6ème journées d'étude de et d'échange CORESA'00, Futuroscope de Poitiers, 19-20 octobre 2000.
- Deumié C., Destouches N., Giovannini H., Amra C., "Angular scattering and ellipsometry of the scattered field: Multiscale roughness and contamination of surfaces", Proceedings of the 4th international Conference on space optics, ICSO 2000, Vol., No., pp.445-454, 2000.
- Gervaise C., Gagliano, Serra J.J. Commandré M. Serror S., "Local thermal characterization of inner gun tube refractory metallic coatings", Proceeding of "Heat transfer and transport phenomena in microsystems", Banff, Canada, Vol., No., pp., 2000.
- Gatto A., Commandré M.,, "Multiscale mapping technique for the simultaneous estimation of absorption an partial scattering in optical coatings", SPIE, Vol.4099, No., pp.110-123, 2000.
- Boucher Y., Deumié C., Amra C., Pinard L., Mackowski et al.,, "Round robin of painted targets BRDF measurements", Inorganic Optical Materials II, Alexander J. Marker III, E.G. Arthurs, Editors SPIE Proc., Vol.4102, No., pp.261-275, 2000.
- Cabanillas S., Guillaume M., Réfrégier Ph., "Reconstruction of astronomical images from low-photon image sequence : study for Gaussian displacements.", Conférence IWISPA 2000, pp 35-40, Pula, Croatia, 15-16 juin, 2000.
- Germain O., Réfrégier Ph., "Statistical multiregion snake-based segmentation.", Mathematical Modeling, Estimation and Imaging, San Diego, USA., Vol., No., pp.4121, 2000.

- M. Cathelinaud, F. Lemarquis, Ph. Torchio, C. Amra, "Design and manufacture of high absorption metal dielectric coatings for the reduction of straylight", ICSO 2000, 4th Colloque International sur l'Optique Spatiale, CNES Toulouse, pp.119-128, 2000.
- Gatto A., Kaiser N., Thielsch R., Torchio Ph., Alvisi M. Boccara C. et al., "Achromatic Damage Investigations on Mirrors for U.V. -Free Electron Lasers", Laser Induced-Damage in Optical Materials, Vol.4347, No., pp.535-546, 2000.
- Torchio P., Albrand G., Alvisi M., Amra C., Cousin B, Otrio G., Rauf H., "Thin Film Optical Coatings for the Ultraviolet Spectral Region", 4th International Conference on Space Optics, ICSO'2000 Proceedings, CNES, Toulouse, pp. 475-484, 5-7 December, 2000.
- Gatto A., Thielsch R., Torchio P., Alvisi M., Amra C. et al., "Towards resistant UV mirrors at 200 nm for free Electron Lasers. Manufacture Characterizations Degradations Tests", Inorganic Optical Materials II, Alexander J. Marker III, E.G. Arthurs, Editors SPIE Proc., Vol.4102, pp.261-275, 2000.
- K. Belkebir, "Reconstruction of two-dimensional complex permittivity distribution from real data", Workshop on microwave imaging methods and techniques, Paris, 2 Octobre 2000.
- H. Rigneault, C. Begon, "Spontaneous emission modifications in planar microcavities: application to auto-fluorescence control for thin film under UV irradiation", Avances in Optical Interference Coatings, SPIE Europto Series, Vol. 3738, pp. 280-288, 1999.
- Begon C., Rigneault H., Rarity J., Bazin H., "Luminescence control and detection of biological markers,", Conf. "31st European Congress on Atomic Spectroscopy" Marseille, 6-9 juillet, 1999.
- Mahodaux C., Rigneault H., Giovannini H., Moretti P., "Stress in optical thin films Conf.Optical Systems design and Production", EUROPTO, Conf. Advances in Optical Interference Coatings, Berlin, Vol.3738, No., pp., 1999.
- Flory F., Escoubas L., Tisserand S., Nicolas E., Albrand G., Lemarchand F., Roux L., "Enhancement of the diffraction efficiency of titanium implanted gratings by associating them with optical interference coatings", EUROPTO, Conf. Advances in Optical Interference Coatings, Berlin, Vol.3738, No., pp.306-315, 1999.
- Derrode S., Mezhoud R., Ghorbel F., "Comparaison de deux familles de descripteurs de formes pour l'indexation de bases d'images 2D.", 5èmes journées d'étude et d'échange CORESA'99, Sophia-Antipolis, 14-15 juin 1999.

- Derrode S., Daoudi M., Ghorbel F., "Invariant content-based image retrieval using a complete set of Fourier-Mellin descriptors", Int. Conf. on Multimedia Computing and Systems, Florence (It.), June 7-11 1999, pp. 877-881.
- Derrode S., Mezhoud R., F. Ghorbel, "Reconnaissance de formes par invariants complets et conergents Applications à l'indexation de bases d'objets à niveaux de gris.", 17ème colloque GRETSI'99, Vannes, 13-17 Sept. 1999.
- Lecornu L., Togni S., Derrode S., Hamitouche-Djabou C., "Segmentation 3D et analyse de bancs de poissons à partir d'une séquence d'images acquise par sonar multi-faisceaux.", 17ème colloque GRETSI'99, Vannes, 13-17 Sept. 1999, pp. 119-122.
- Deumié C., Destouches N., Cathelinaud M., Albrand G., Cassagne C., Amra C., "Optical Materials in powder forms: characterization techniques,", EUROPTO, Conf. Advances in Optical Interference Coatings, Berlin, Vol.3738, No., pp 417-425., 1999.
- Deumié C., Destouches N., Giovannini H., Amra C., "Polarimetric phase measurement for the detection of contaminants on optical surfaces", EUROPTO, Conf. Advances in Optical Interference Coatings, Berlin, Vol.3738, No., pp.401-409, 1999.
- Lequime, Destouches N., Giovannini H., "A new interferometric method for the complete determination of the properties of the light field scattered by a rough surface", Advances in Optical Interference Coatings, Vol.3738, pp.381-386, 1999.
- P. Kadkhoda, C. Amra, J.M. Bennett, C. Deumié, A. Duparré et al., "International round-robin experiment on Optical Total Scattering at 633nm According to ISO/DIS 13696", Optical Fabrication and Testing, SPIE, Vol. 3738, pp. 417-425, 1999.
- Lequime M., Deumié C., Amra C., "Light scattering from WDM filters", Advances in Optical Interference Coatings, Vol. 3738, pp.268-277, 1999.
- Z.L. Wu, M.D. Feit, M.Kozlowski, J.Y. Natoli, A. Rubenchik, L. Sheehan and M. Yan, "Single-beam photothermal microscopy a new diagnostic tool for optical materials", Proc. SPIE 3578, 226-234, 1999.
- Gatto A., Commandré M., Roche P., "Statistical distribution of optical losses in thin films through increasing spatial windows", EUROPTO, Conf. Advances in Optical Interference Coatings, Berlin, Vol.3738, No., pp., 1999.
- C. Mahodaux, H. Rigneault, L. Gallais, A. Gatto, P. Moretti, "Stress in dielectric thin films: evolution with annealing and ion implantation", Conf. Advances in Optical Interference Coatings, Berlin, SPIE Europto Vol.3738, No., pp 146-157, 1999.

- Goudail F., Réfrégier Ph., "Analysis of the robustness of a double-phase encoding system to a perturbation of the coded image.", Proc. SPIE « Algorithms, Devices, and Systems for Optical Information Processing III », Bahram Javidi, Demetri Psaltis, Editors, Vol.3804, No., pp.160-171, 1999.
- Goudail F., Ruch O., Réfrégier Ph., "Deconvolution of an image perturbed by several defocus blurs.", Proc. SPIE 3Applications of Digital Image Processing XXII3, Andrew G. Tescher, Editor., Vol.3808, No., pp.457-468, 1999.
- Chesnaud C., Réfrégier Ph., "Fast algorithm for region snake based segmentation adapted to physical noise models and application to objet tracking.", SPIE Proceedings, p 77-85, Optical Science, Engineering, and Instrumentation44th Annual Meeting and Exhibition, Denver, (USA), July 1999.
- Torchio Ph., Cathelinaud M., Amra C., et al., "Design and production of multilayer light absorbers based on alternated metal-dielectric films", EUROPTO, Conf. Advances in Optical Interference Coatings, Berlin, Vol.3738, No., pp.110-117, 1999.
- 4 Lemarquis F. ,, "Alternated Gradual Synthesis", EUROPTO, Conf. Advances in Optical Interference Coatings, Berlin, Vol.3738, No., pp., 1999.
- G. Gazoty, R. Deleuil, "Diffraction d'une onde électromagnétique plane par un biréseau métallique plan formé de cavités hémisphéroïdales", C.R. Acad. Sc. Paris, Série 2B, tome 327, n 5, mai 1999, p. 555-558.
- G. Gazoty, R. Deleuil, P. Sabouroux, "Expérimentation microonde sur la diffraction par des biréseaux métalliques de cavités hémisphéroïdales", C. R. Acad. Sci. Paris, t. 327, Série II b, p. 1419-1422, 1999.
- O. Calvo-Perez, A. Sentenac and J-J. Greffet, "Light scattering by a two-dimensional, rough penetrable medium: A mean-field theory", Radio Science, 34, 311-335.

XIX.3. Conférences invitées dans des congrès internationaux

39 C. Amra, "Design and Technology of Optical Coatings: High Level Expert Meeting European Network of Excellence High Quality Optical Coatings (NoE HighQC)"- September 21st – 24st, 2003, Bonassola, Italy M. Lequime, "Tunable thin film filters", Advanced design methods for optical 38 interference coatings", Marseille, Février 2003 37 C. Amra, "Couches minces optiques: applications modernes", Les Ateliers de l'Astronomie", Grenoble 2002 36 M. Commandré, JY. Natoli, L. Gallais, « Photothermal Microscopy and Laser Damage », Advanced Optics for Microelectronics, SPIE San Diego, Août 2003 35 M. Commandré, JY. Natoli, « High resolution Photothermal Microscopy", annual Worshop "New trends in Optical Design", Marseille, Février 2003 34 E. Popov, M. Neviere, N. Bonod, "Differential theory amelioration using Fourier factorisation rules", OSA Tech. Digest DOMO v.75, 34-37, 2002. G. Tayeb, "Photonic Crystal-based antennas", Invited conference, European 33 Space Agency, ESTEC, Noordwijk, The Netherlands, April 12th, 2002. 32 S. Enoch and G. Tayeb, "The richness of the dispersion relation of photonic crystals: application to superprism effect and other remarkable effects", Invited conference, Second IEEE Conference on Nanotechnology (IEEE-Nano'2002), August 26-28, 2002. 31 A. Nicolet, S. Guenneau, Z. Zolla, C. Geuzaine, B. Kulhmey, and G. Renversez, "Numerical investigation of photonic crystal fibres by means of finite element and matrix of diffraction methods.", Liverpool, 2002. Kluwer Academic Press. 30 F. Zolla, S. Guenneau, A. Nicolet, "Artificial fero-magnetic anisotropy: homogenization of 3D finite photonic crystals", I.U.T.A.M., 8-11 Juillet 2002 -Liverpool. 29 D. Maystre, S. Enoch, G. Tayeb, "Ultrarefraction properties of photonic crystals", PIERS 2002, Boston, July 2002. 28 Lenne P-F., Colombo D., Giovannini H., Rigneault H., "Flow profiling using fluorescence correlation spectroscopy", Linz Winter Workshop of nanoproves and fluorescence spectroscopy, Linz, January, 2002. 27 Rigneault H., "Single molecule enhancement using photonic structures",

Colloque Franco-Allemand de Physique, "Single molecule physics" Fondation

des Treilles, 12-18 avril, 2002.

26	E. Etienne, P-F Lenne, H. Rigneault, "Fluorescence correlation spectroscopy on mirrors", Linz Winter Workshop of nanoproves and fluorescence spectroscopy, Linz, January, 2002.
25	C. Amra, C. Deumié, "Light scattering: a powerful non destructive probe", International Meeting of Brasilian Physical Society, Caxambu 2002.
24	Goudail F., Réfrégier Ph., "Estimation and detection in active polarimetric images", Workshop of the EOS Technical Group on Information Optics (IOG), Septembre 2002, Mannheim., 2002.
23	M. Saillard, "Scattering from rough surfaces: application to remote sensing", Invited conference, European Space Agency, ESTEC, Noordwijk, The Netherlands, April 12th, 2002.
22	G. Soriano, M. Saillard, "An improved bistatic two-scale model for ocean scattering", URSI General assembly, Maastricht, Aug. 2002.
21	C.H. Chan, M. Xia, L. Tsang, M. Saillard, G. Soriano, "Recent developments of 3D modeling of random rough surfaces", URSI General assembly, Maastricht, Aug. 2002.
20	B. Kuhlmey, G. Renversez, and D. Maystre, "Losses and dispersion of microstructured optical fibres", In Progress in Electromagnetics Research Symposium 2001, Osaka, 2001. The Electromagnetics Academy.
19	B. Kuhlmey, T. White, M. de Sterke, L. Botten R. McPhedran, D. Maystre, and G. Renversez, "Confinement losses in microstructured optical fibres", In Proceedings of the Australian Conference on Optics, Lasers and Spectroscopy 2001, page~86, 2001.
18	Flory F., Escoubas L., Lazarides B., Huguet-Chantome P.,, "Characterizations of thin films for Optical Microcomponents", Optical Interference Coating 2001, Banff, Canada, 15-20 July, 2001.
17	Lenne P-F. " "Dépliement forcé de protéines individuelles", Congrès de la Société Française de Physique, Strasbourg, July, 2001.
16	C. Amra, "Light Scattering from DWDM filters", Laser Induced Damage in Optical Materials, Boulder 2001.
15	Réfrégier Ph., Goudail F., "Statistical processing of polarization diversity images.", Euro-American Workshop on Optoelectronic Information Processing, (Valencia), 28-31 May 2001. SPIE Press, - N ISBN 0-8194-4123-16, 2001.

C. Amra, M. Lequime, R. Parmentier, F. Lemarchand, "Towards tunable

optical filters?", Optical Interference Coatings, Topical Meeting Banff, 2001.

.

14

- B. Gralak, S. Enoch, G. Tayeb, "Photonic crystals: from Bloch modes to T-matrices", Progress in Electromagnetics Research Symposium, Cambridge, USA, July 2000.
- D. Maystre, G. Tayeb, S. Enoch, "Propagation of light in photonic band structures: numerical results and applications", International Photonics Conference (IPC'2000), Taiwan, 12-15 Decembre 2000, Conférence invitée.
- D. Maystre, B. Gralak, "Photonic crystals: an electromagnetic phenomenological theory", PIERS Proceedings (2000) Cambridge, ISBN 0-9679674-0-6.
- P-F Lenne, "Forced unfolding of a single protein domain", In Nanobiotec Congress, Münster-Germany.
- 9 Flory F., Huguet-Chantôme P., "Measurement of the thermal properties of thin films with the two beam prism coupler", 4th International Conf. "Thin films physics and applications, Shanghaï, Chine, 8-11 May, 2000.
- Amra C., Deumié C., Natoli J-Y, Commandré M., Torchio Ph., "Topographie multi-échelle pour le filtrage optique multicouche large-bande", 5ème Colloque sur les sources cohérentes et incohérentes UV, VUV, X, Ile de Porquerolles, Mai, 2000.
- M. Saillard, P. Vincent, S. Bonnard, "Reconstruction of homogeneous objects", URSI, Kleinheubach (All.), 25-29 Sept.2000.
- D. Maystre, G. Tayeb, P. Vincent, S. Enoch, G. Guida, "Electromagnetic modeling of dielectric and metallic photonic crystals", Invited conference, IUTAM Symposium on Mechanical and Electromagnetic Waves 99, Sydney, January 1999.
- Giovannini H., Sentenac A., Amra C.,, "Scattering from overcoated rough structures-Application to the reduction of scattering", EUROPTO, Conf. Advances in Optical Interference Coatings, Berlin, SPIE Vol.3738, N, pp.376-379, 1999.
- Giovannini H., Sentenac A., Amra C.,, "Scattering from overcoated rough structures-Application to the reduction of scattering", EUROPTO, Conf. Advances in Optical Interference Coatings, Berlin, SPIE Vol.3738, N, pp.376-379, 1999.
- Réfrégier Ph., "Filtering techniques for optical pattern recognition.", ICO XVIII, 18th Congress of the International Commission for Optics: Optics for the next Millennium", (San Francisco, California, USA), 2-6 August 1999.,
- Chesnaud C, Réfrégier Ph., "Snake region based segmentation for different physical noise models and fast algorithm implementation.", PSIP'99 "Physics in Signal and Image Processing", First International Symposium, Paris, France, January 18-19, 1999.,.

Réfrégier Ph., Goudail F., Chesnaud C., "Statistically independent region models applied to correlation and segmentation techniques.", Euro-American Workshop on Optoelectronic Information Processing, Colmar., 1999, SPIE Press, - N ISBN 0-8194-3457-4.

XIX.4. Chapitres et ouvrages

- D. Maystre, G. Tayeb, P. Vincent, S. Enoch, G. Guida, "Electromagnetic modelling of dielectric and metallic photonic crystals", IUTAM Symposium 99/4: Mechanical and Electromagnetic Waves in Structured Media. Editors: R.C. McPhedran, L.C. Botten, N.A. Nicorovici, Kluwer Academic Publishers Dordrecht/Boston/London, January 2002.
- D. Maystre, M. Saillard, G. Tayeb, "Special methods of wave diffraction", Chapter 1.5.6 in "Scattering", editors: P. Sabatier and E.R. Pike, Academic Press, London, 2001 (ISBN: 0126137609).
- D. Felbacq, E. Centeno, F. Zolla, "Electromagnetic Optics of Finite-Size Photonic Crystals: Homogeneization, Resonance non linearity and propagation", A paraître.
- D. Maystre, G. Tayeb, P. Vincent, S. Enoch, G. Guida, "Electromagnetic modelling of dielectric and metallic photonic crystals", IUTAM Symposium 99/4: Mechanical and Electromagnetic Waves in Structured Media. Editors: R.C. McPhedran, L.C. Botten, N.A. Nicorovici, Kluwer Academic Publishers Dordrecht/Boston/London, January 2002.
- D. Felbacq, E. Centeno, F. Zolla, "Electromagnetic Optics of Finite-Size Photonic Crystals: Homogeneization, Resonance non linearity and propagation", A paraître.
- H. Rigneault, "Optical thin films for spontaneous emission control", Norbert Kaiser Editeur, Springer series in Photonics sortie prévue en nov. 2002.
- Escoubas L., Flory F.,, "Optical thin Films for micro-components", Springer Series in Optical Sciences Optical Interference Coatings, Kaiser N., Pulker J. eds, Springer Verlag, Vol., No., pp., 2002.
- Ph. Réfrégier,, ""Théorie du bruit et application physique accepté pour publication aux éditions Hermès 4ème trimestre 2002.", Springer Series in Optical Sciences Optical Interference Coatings, Kaiser N., Pulker J. eds, Springer Verlag, Vol., No., pp., 2002.
- Ph. Réfrégier and F. Goudail, and Pierre Chavel, "Polarimetric Imaging", Accepté pour publication dans le livre accompagnant les actes de la conférence ICO Florence 2002..
- O. Germain and Ph. Réfrégier, "Edge detection an location in SAR images : Contribution of statistical deformable models", « Image recognition and classification : Algorithms, Systems, and Applications». (B. Javidi, ed.), Marcel Dekker, Inc., New York, (2002), pp; 101-150.

- S. Altmann, P-F Lenne, "Forced unfolding of single proteins.", Methods in Cell biology. Vol. Atomic Force Microscopy in Cell Biology. B.P. Jena and J.K. Hörber, editors. Academic Press.
- M. Neviere, S.A. Darmanyan, "Nonlinear eigenmodes in quadratic film waveguides", In "Nonlinearity and Disorder: Theory and Applications", ed. by Abdullaev F.K.H., Soepençen M., Bang O., NATO ASI Series, Kluwer Academic Publishers (London, 2001).p. 423-433.
- D. Maystre, "Diffraction (Les origines)", Electronique, Génie électrique, Microsystèmes, Tome 1 : Principes de base en Optique, Hermès, à paraître (43 pages).
- J.M. Lourtioz, D. Maystre, J.M. Gerard, H. Benistry, A. Chelnokov, V. Berger, "Les matériaux structurés périodiquement, les cristaux photoniques", Tome 7 : Matériaux pour l'opto-électronique, Hermès, à paraître (48 pages).
- Ph. Réfrégier and F. Goudail., "Statistical processing of polarization diversity images", Euro-American Workshop on Optoelectronic Information Processing: Optics for information systems, (Valence Espagne), May 2001 SPIE Press, Vol.CR74, p. 262-288, N ISBN 0-8194-4123-6. Editors: Ph. Réfrégier, B. Javidi, C. Ferreira, Vallmitjana..
- 5 C.A. Guerin, M. Saillard, M. Holschneider, "Scattering on Multiscale rough surfaces.", Patrick Sebbah editor, Waves and Imaging in Complex Media, Kluwer Academics, Congrès, 2001, PP.339-346.
- M. Neviere, E. Popov, R. Reinisch, G. Vitrant, "Electromagnetic resonances in Nonlinear Optics", Série "Advances in Nonlinear Optics", editor: A.F. GARITO, F. KAJZAR, and A. BOARDMAN, Gordon and Breach Science Publishers, 2000. 389 pages.
- R. Reinisch, G. Vitrant, E. Popov, M. Neviere, "Leaky modes in nonlinear optical resonators", IIn "Multiphoton and light driven multielectron processes inorganics: new phenomena, materials, applications" Eds. F. Kajzar and M. V. Agranovich, NATO Science Series, Vol. 79, p. 167-182, (Kluwer Academic Publishers, Dordrecht), 2000.
- Ph. Réfrégier, F.Goudail, C. Chesnaud., "Statistical independent region models applied to correlation and segmentation techniques". Euro-American Workshop on Optoelectronic Information Processing, (Colmar), May 1999, SPIE Press, Vol. CR174, p.193-224, N ISBN 0-8194-3324-1. Editors: Ph. Réfrégier, B. Javidi.,
- 1 C.A. Guerin, M. Holschneider, "Wavelet dimensions and time evolution", J. Van den Berg editor, Wavelets in Physics, Cambridge University Press, 1999.

XIX.5. Brevets

- Rigneault R., P.F. Lenne, "Dispositif et procédé de mesure d'un échantillon par spectroscopie de corrélation", Brevet CNRS n FR63860 M, 2001.
- Escoubas L., Flory F., Drouard E., Tisserand S., Roux L., "Guide d'onde comportant un canal sur un substrat optique, déposant : IBS,", N de publication 2818390 WO 02/48747A2, FR 0016549, 2000.
- 8 Roux L., Tisserand S., Reversat F., Jacob S., Drouard E., Escoubas L.,, "Adaptateur de mode optique comportant un canal sur un substrat optique (Société Silios technologies), F01069", 2002 (date de dépôt avril 2002).
- Lenne P.F., Escoubas L., Rigneault H., Lenne W., Giovannini H., "Dispositif de mesure des propriétés optiques de l'œil", Brevet CNRS/Luneau Optalmologie/Aix Marseille III n FR 64002 N, 2002.
- H. Rigneault, P.F. Lenne., "Dispositif permettant la détection exaltée et l'analyse de la diffusion des particules luminescentes ou réfléchissantes optiquement.", (CNRS). FR63860 M.2001.
- J. Hoose, R. Frankel, E. Popov., ""Diffractive structure for high-dispersion WDM application," applications for US patent No 60/286,801./25 April 2001 and 60/300,639 /25 June 2001. Proposé", .
- J. Hoose, R. Frankel, E. Popov., ""Compact diffraction grating for laser tuning and WDM applications", #CHRO-p60-004, filed 25 April, 2001. C", .
- J. Hoose, R. Frankel, E. Popov., ""Lamellar grating structure with polarization independent diffraction efficiency", #CHRO-P01-007, filed January 31, 2002. Proposé", .
- J. Hoose, R. Frankel, E. Popov., ""Lamellar grating structure with polarization-independent diffraction efficiency," US patent application No.60/351,067, January 23, 2002, proposé.", .
- P. Réfrégier., "«Algorithme de contrôle sans butée de la polarisation de la lumière dans le cadre des applications télécommunications à très haut débit».proposé 2002", Thales, Alcatel, ENST Br, INRIA..

XIX.6. <u>Publications dans revues nationales avec comité de lecture</u>

- Guillaume M., Bourennane S., Hermann F., "Estimation de mouvements et reconstruction d'images à partir de séquences à faible flux.", Traitement du signal, en cours de révision, Vol., No., pp., 2002.
- Goudail F., Ph. Réfrégier, "Algorithmes statistiques pour le traitement des images polarimétriques en lumière cohérente", Traitement du signal., Vol.18, No.5.6, pp.297-319, 2001.

- D. Maystre, J.M. Lourtioz, "Les cristaux photoniques ou la maîtrise totale de la propagation de la lumière", Optique et Photonique, Journal de la Société Française d'Optique, n 1, p. 20-28, 2000.
- J.M. Lourtioz, D. Maystre, "Les cristaux photoniques ou l'art de mettre la lumière en cage avec des matériaux transparents", Pour la Science (French edition of Scientific American), Septembre 2000, p. 66-73.
- Cabannillas S., Guillaume M., Réfrégier Ph., "Reconstruction d'images astronomiques à partir de séquences à faible flux : étude pour des mouvements gaussiens.", Traitement du signal., Vol.17, No.2, pp.125-138, 2000.

XIX.7. Autres publications

- E. Popov, "Electromagnetisme : cours d'électrostatique et magnétostatique", Université de Provence.
- D. Maystre, "L'étude des ondes électromagnétiques", La revue parlementaire, "Les Hautes Technologies", supplément au n 824.

XIX.8. Autres conférences

- B. Kuhlmey, M. de Sterke, R McPhedran, L. Botten, and G. Renversez, "Study of the number and nature of modes of microstructured optical fibers.", In OSA annual meeting, October 2002.
- 115 R.C. McPhedran, B. Kuhlmey, G. Renversez, D. Maystre, T. White, L. Botten, and M. de Sterke, "Dispersion and structural losses in photonic crystal fibres", Australian Physical Society, July 2002.
- A. Nicolet, F. Zolla, S. Guenneau, "Les cristaux photoniques : une nouvelle génération de semi-conducteurs pour la lumière", Bulletin scientifique de l'Association des Ingénieurs Electriciens sortis de l'Institut Montefiore.
- Flory F., Jelinek M., Escoubas L., Lancok J., "Optical characterization of active PLZT and BaTiO3 laser grown layers", Photonic Asia, 2002.
- H. Rigneault, F. Lemarchand, "Fluorescence enhancement using corrugated surfaces", Linz Winter Workshop of nanoproves and fluorescence spectroscopy, Linz, January, 2002.
- 111 Chow R., Taylor J.R., Wu S.L., Boccara C., Broulik U., Commandré M., Roche P., et al., "Absorptance measurements of optical coatings -A Round Robin", Conf. 32th "Annual symposium on optical material for high power lasers", Boulder, Colorado, USA, October, 2002.
- Natoli J-Y., Gallais L., Akhouayri H., Amra C., "Détermination fine de probabilité d'endommagement laser par une étude localisée", Groupe de travail sur l'endommagement laser au CEA CESTA- Projet Mégajoule, juin, 2002.

- Akhouayri H. " "Modélisation en optique électromagnétique de la diffraction", Projet DOLAMI (Dopage Laser pour la Microélectronique) IEF Paris, 37379, 2002.
- Gallais L., Natoli J-Y.,, "Optimisation de la métrologie pour les mesures d'endommagement laser", Groupe de travail sur l'endommagement laser au CEA CESTA- Projet Mégajoule, juin, 2002.
- Gallais L., Natoli J-Y., "Optimized metrology for accurate laser damage measurements", CLEO/QELS Californie USA, May, 2002.
- During A., Fossati C., Commandré M., "Photothermal deflection for microscopy and detection of submicron-sized defects", CLEO/QELS Long Beach, Californie USA,19-24 mai 2002.
- During A., Commandré M., Fossati C., Natoli J-Y., Jean Luc Rullier (CEA /DAM Ile de France), Hervé Bercegol (CEA /DAM CESTA), Philippe Bouchut (CEA/DOPT LETI), "Photothermal microscopy for in-situ study of laser damage induced by gold inclusions", Conf. 34th"Annual symposium on optical material for high power lasers", Boulder, Colorado, USA, 18-20 Sept., 2002, à paraître dans SPIE.
- Ruch O., Goudail F., Réfrégier Ph., "Information Theory-based snake segmentation adapted to speckled images.", 19th Congress of the International Commission for Optics, "Optics for the quality of life.", 25-30 August 2002 Firenze, Italy., 2002.
- Réfrégier Ph., Goudail F., "Invariance properties of polarization in active imagery and applications to contrast definition.", 19th Congress of the International Commission for Optics, "Optics for the quality of life.", 25-30 August 2002 Firenze, Italy, 2002.
- Torchio Ph., "Progress in Production and Characterization of HR-Mirrors for FELs", Optical Task Meeting of the European Network "Towards a SR-FEL Source at 200 nm", Orsay, Paris, February 27, 2002...
- B. Kuhlmey, D. Maystre, and G. Renversez, "Théorie des fibres optiques à cristaux photoniques", In Optix 2001. Institut Fresnel et ENSPM, november 2001.
- M. Neviere, S. Darmanyan, "S-polarized surface waves on the interface of two quadratic nonlinear media.", PIERS 2001, Osaka, Japon (Juillet 2001).
- 99 S. Enoch, E. Popov, M. Nevière, "3D photonic crystals: fast Fourier factorization (FFF) method, application for dispersion relation", EOS topical meeting on Electromagnetic Optics, Paris, August 26-30 2001.
- N. Guérin, S. Enoch, G. Tayeb, P. Vincent, "Cristaux photoniques pour la conception d'antennes directives", Optix2001, Marseille, 26-28 Novembre 2001.

- 97 S. Enoch, E. Popov, M. Nevière and R. Reinisch, "Enhanced light transmission by sub-wavelength hole arrays", EOS topical meeting on Electromagnetic Optics, Paris, August 26-30 2001.
- A.-L. Fehrembach, S. Enoch and A. Sentenac, "Highly directive source devices using a photonic crystal slab", EOS topical meeting on Electromagnetic Optics, Paris, August 26-30 2001.
- A.-L. Fehrembach, S. Enoch and A. Sentenac, "Highly directive source devices using slab photonic crystal", SPIE's International Symposium on Optical Science and Technology, San Diego (USA) 29 July-3 August 2001.
- 94 B. Gralak, S. Enoch, G. Tayeb, "Sélectivité angulaire et taux d'émission d'une source : peut-on les réconcilier ?". Réunion du GdR "Microcavités et Cristaux Photoniques Montpellier 6-7 décembre 2001", .
- 93 H. Rigneault, J. Broudic, B. Gayral, J. M. Gérard, "Emission en champ lointain de boîtes quantiques localisées dans des micro-résonateurs optiques 3D", Optix 2001, Marseille 26-28 Novembre 2001.
- 92 Flory F., Escoubas L., Lazarides B.,, "Artificial anisotropy and polarizing multilayers", Optical Interference Coating 2001, Banff, Canada, 15-20 July, 2001.
- Gagliano O., Serra J-J, Bénet S., Commandré M., "Caractérisation themophysique à micro-échelle de revêtements métalliques", Journées SFT, Paris, janvier, 2001.
- 90 Colombo D., Lenne P-F., Giovannini H., Rigneault H., Monneret S.,,
 "Cartographie d'écoulement en microfluidique capillaire par spectroscopie de
 correlation de fluorescence", Colloque OPTIX, Marseille, 26-28 Nov., 2001.
- 89 E. Drouard, L. Escoubas, F. Flory, S. Tisserand, L. Roux,, "Composants d'optique intégrée réalisés par implantation d'ions", Poster prés. à Optix 2001, Marseille 26 28 nov . 2001.
- Drouard E., Escoubas L., Flory F., Roux L., Tisserand S., "Composants d'optique intégrée réalise par implantation d'ions", Poster prés. À Journée thématique Couches Minces, Marseille, 26-28 Nov, 2001.
- 87 Escoubas L., Drouard E., Flory F., Lemarquis F.,, "Design of integrated optics filters", Optical Interference Coating 2001, Banff, Canada, 15-20 July, 2001.
- Etienne E., Lenne P-F., Rigneault H., "Détection et exaltation de la luminescence de molécules biologiques individuelles en solution", Colloque OPTIX, Marseille, 26-28 Nov., 2001.

- E. Etienne, P.F Lenne, H. Rigneault, "Détection et exaltation de la luminescence de molécules biologiques individuelles en solution',", Coloq 7, Rennes 5-7 septembre 01, Rennes.
- Rigneault H., Broudic J., Gayral B., Gérard J.M., "Emission en champ lointain de boîtes quantiques localisées dans des micro-résonateurs optiques 3D", Colloque OPTIX, Marseille, 26-28 Nov., 2001.
- Bittebierre J., Lazaridès B.,, "Filtres à bande passante étroite et à large réjection pour guides d'ondes monomodes : apllications aux télécommunications", colloque "OPTIX 2001" Marseille, 26-28 Nov., 2001.
- Lenne P-F., Altmann S.M., Raae A.J., Ylanne, J., et al.,, "Forced unfolding of Alpha-Helical Bundles", 7th International Wokshop on "Single Molecule Detection and Ultra Sensitive Analysis in the Life Sciences" Berlin, September, 2001.
- Drouard E., Huguet-Chantome P., Escoubas L., Flory F., "Guided- wave ?n/?T measurements for narrow-bandpass filters", Optical Interference Coating 2001, Banff, Canada, 15-20 July, 2001.
- Huguet-Chantome P., Escoubas L., Flory F., "Guided-wave measurement of thermal properties of thin-film materials", Optical Interference Coating 2001, Banff, Canada, 15-20 July, 2001.
- Destouches N., Guérin C.A., Giovannini H., "Measurement of both amplitude and phase of the diffracted field in the optical domain Application to the resolution of inverse problems", Topical meeting Electromagnetic Optics, Ecole Centrale de Paris, Août, 2001.
- Drouard E., Huguet-Chantome P., Escoubas L., Flory F., "Mesures de dn/dT par optique guidée pour application aux filtres à bande étroite, Poster", Colloque "OPTIX 2001" Marseille, 26-28 Nov, 2001.
- Drouard E., Huguet-Chantome P., Escoubas L., Flory F., "Mesures de dn/dT par optique guidée pour application aux filtres à bande étroite, Poster prés. À Journée thématique Couches Minces, Marseille, 26-28 Nov, 2001.
- E. Drouard, P. Huguet Chantôme, L. Escoubas, F. Flory, "Mesures de dn/dT par optique guidée pour filtres à bande étroite", Poster prés. à Journée thématique Couches Minces, Marseille, 14 juin 2001.
- P. Huguet Chantôme, L. Escoubas, F. Flory, "Mesures de propriétés thermiques de matériaux en couches minces par optique guidée", Poster prés. à Journée thématique Couches Minces, Marseille, 14 juin 2001.
- Huguet-Chantome P., Escoubas L., Flory F., "Mesures des propriétés thermiques de matériaux en couches minces par optique guidée Poster", Colloque "OPTIX 2001" Marseille, 26-28 Nov., 2001.

- Huguet-Chantome P., Escoubas L., Flory F., "Mesures des propriétés thermiques de matériaux en couches minces par optique guidée Poster", Journée thématique Couches Minces Marseille, 37421, 2001.
- Escoubas L., Drouard, Flory F., "Modélisation de filtres pour ondes guidées", Poster, Colloque "OPTIX 2001" Marseille, 26-28 Nov., 2001.
- Rigneault H., Lenne P-F., Etienne E., "Spectroscopie de fluorescence et structures photoniques", Journée du groupement français de photochimie/lumière, Paris, 12-13 Déc., 2001.
- Escoubas L., Drouard, Flory F., "Synthèse de filtres pour ondes guidées", Poster prés. à Journée thématique Couches Minces, Marseille, 14 juin 2001.
- E. Drouard, P. Huguet Chantôme, L. Escoubas, F. Flory, "Mesures de dn/dT par optique guidée pour application aux filtres à bande étroite", Poster prés. à Optix 2001 Optix, Marseille 26 28 nov . 2001.
- C. Deumié, O. Gilbert, C. Amra, "Etude de la diffusion lumineuse à haute résolution angulaire : application à la discrimination des rugosités et hétérogénéités, à la caractérisation du degré de perturbation des échantillons", Colloque Mesures Optiques pour l'Industrie, Novembre, 2001.
- Akhouayri H. " "Access to local field distribution using surface second-harmonic generations", Caxambu.
- Fossati C., During A., Commandré M., "Cartographies de défauts absorbants et diffusants à plusieurs longueurs d'onde. Etude des corrélations Poster", Colloque "OPTIX 2001" Marseille, 26-28 Nov., 2001.
- Natoli J.Y., Deumié C., Gallais L., Amra C.,, "Deflection of angular scattering resulting from laser irradiation", Optical Interference Coating 2001, Banff, Canada, 15-20 July, 2001.
- During A., Fossati C., Commandré M., "Développement d'un microscope photothermique pour l'étude multi-échelle de l'absorption", Colloque "OPTIX 2001" Marseille, 26-28 Nov., 2001.
- Akhouayri H. " "Estimation du champ local par l'utilisation du second harmonique dans les films minces", Colloque 2001 (Imagerie et Spectroscopie dans les milieux difficiles) du GDR Matériaux et Fonctions de l'Optique Non linéaire. Les Houches, 1-3 Octobre, 2001.
- Gallais L., Perra M., Natoli J_Y., Amra C., "Etude des nanocentres précurseurs de l'endommagement laser dans la silice", Colloque "OPTIX 2001" Marseille, 26-28 Nov., 2001.
- Deumié C., Gilbert O., Amra C., "High-angle resolved scattering for detection and discremination of bulks and surfaces", Optical Interference Coating 2001, Banff, Canada, 15-20 July, 2001.

- Gagliano O. ,Commandré M. , Suzanna P. , Serra J-J ,, "Importance de la maîtrise des paramètres optiques sur l'identification de propriétés thermiques des revêtements métalliques réfractaires à micro-échelle, par un etechnique de photoréflexion modulée", Colloque "OPTIX 2001" Marseille, 26-28 Nov., 2001.
- Natoli J.Y., Gallais L., Akhouayri H., Amra C., "Laser-induced damage of materials in bulk, thin films and liquid forms", Optical Interference Coating 2001, Banff, Canada, 15-20 July, 2001.
- Lequime M., Deumié C., Amra C., "Light scattering from DWDM filters", Conf. 33th "Annual symposium on optical material for high power lasers", Boulder, Colorado, USA, October, 2001.
- Giovannini H., Destouches N., Guerin C-A., Lequime M., "Measurement of the Phase of the Waves Diffracted by Gratings Applications", Physics Theory and applications of periodic structures in optics, San Diego, USA, 2001.
- Olivier T., Akhouayri H.,, "Mesure de l'indice de réfraction non-linéaire de la silice amorphe dans le régime nanoseconde", Colloque "OPTIX 2001" Marseille, 26-28 Nov., 2001.
- Commandré M., Suzanne P., Serra J.J., "Mesure des propriétés thermiques des revêtements métalliques réfractaires à micro-échelle, par une technique de photoréflexion modulée", Club "Contrôle et Mesures Optiques pour l'Industrie" de la SFO, Méthodes et Techniques Optiques pour l'Industrie, Bretagne, 19-23 Nov., 2001.
- Voarino P., Deumié C., Cathelinaud M., Lequime M., Amra C.,,
 "Microsphères multicouches pour le contrôle spectral de la lumière diffuse",
 Colloque OPTIX 2001, Marseille, 26-28 Nov., 2001.
- Gatto A., Torchio Ph., Amra. C., Albrand G., Feigl T., Kaiser N., Garzella D. et al., "Multiscale Degradations on FEL Optics", The 23rd International Free Electron Laser Conference & the 8th FEL. Users Workshop, Darmstadt (Ger), 23-26 August, 2001.
- During A.,Fossati C., Gatto A., Commandré M.,, "Multi-wavelength imaging of defects in UV optical materials", Optical Interference Coating 2001, Banff, Canada, 15-20 July, 2001.
- Deumié C., Voarino P., Lequime M., Cathelinaud M., Amra C., "Overcoated microspheres and the spectral control of diffuse light", Optical Interference Coating 2001, Banff, Canada, 15-20 July, 2001.
- Destouches N., Deumie C., Giovannini H., Amra C., "Refractive index deduced from light scattering measurements: applications to optical powders", Optical Interference Coating 2001, Banff, Canada, 15-20 July, 2001.

- N. Destouches, C. Deumié, H. Giovannini, C. Amra, "Refractive index deduced from light scattering measurements: applications to optical powders", Topical meeting Electromagnetic Optics, Ecole Centrale de Paris, Août, 2001.
- Gallais L., Akhouayri H., Natoli J-Y, Amra C., "Thermally-induced laser damage in interferential light absorbers", Optical Interference Coating 2001, Banff, Canada, 15-20 July, 2001.
- Gallais L., Akhouayri H., Natoli J-Y, Cathelinaud M., Lemarquis F., Amra C., "Thermally-induced laser damage in interferential metal dielectric filters", Conf. 33th "Annual symposium on optical material for high power lasers", Boulder, Colorado, USA, Octobre, 2001,.
- 46 Ruch O., Réfrégier Ph., "Estimation du nombre de sommets avec la méthode du Contour Actif Statistique Polygonal .", in18th Symposium, GRETSI'01 Signal and Image Processing, (Toulouse, France)., 2001.
- Hueber E., Bigué L, Réfrégier Ph, Ambs P., "Processeur optique pour la segmentation d'images par contours actifs.", Traitement Analogique de l'Information, du SIgnal et ses Applications (TAISA), 2001.
- Torchio Ph., "Production and Characterization of High Reflecting UV-Mirrors for FEL's", General & Mid-Term Review Meeting of the European Network "Towards a SR-FEL Source at 200 nm", ENEA-Freascati, Roma (It.), February 21-23, 2001...
- Torchio Ph., "Progress of the optical coating processes ", Optical Task Meeting of the European Network "Towards a SR-FEL Source at 200 nm", ESPCI, Paris, April 6, 2001..
- Amra C., Albrand G., Lemarquis F., "Filtrage optique par micro-objets interferentiels", Couches minces optiques et systèmes multicouches, 5-7 Mars, 2001.
- Parmentier R., Lemarchand F., Cathelinaud M., Albrand G., Lequime M., Amra C., "Filtres optiques interférentiels à bande étroite pour le DWDM: vers des composants accordables", Colloque OPTIX 2001, Marseille, 26-28 Nov., 2001.
- Lemarquis F., "Gradually Layered Alternated Substrate Synthesis", Optical Interference Coating 2001, Banff, Canada, 15-20 July, 2001.
- Gatto A., Torchio Ph., Amra C., et al., "High-Performance DUV Optics for Free Electron Laser", Optical Interference Coating, Banff, Canada, 15-20 July, 2001.
- Torchio P., Gatto A., Amra C., Albrand G., et al., "High-Reflectivity Dense Mirrors in the Ultraviolet Spectral Region", Optical Interference Coating 2001", Banff, Canada, 15-20 July, 2001.

- Cathelinaud M., Lemarquis F. Amra C., "Index Determination for Metallic Thin Films", Optical Interference Coating 2001, Banff, Canada, 15-20 July, 2001.
- Parmentier R., Lemarchand F., Cathelinaud M., Albrand G., Lequime M., Amra C. et al., "Towards tunable optical filters", Optical Interference Coating 2001, Banff, Canada, 15-20 July, 2001.
- Garzella D., Hirsch M., De Ninno G., Torchio Ph., Alvisi M., Albrand G., Amra C. et al., "UV Mirrors for Storage Ring Free Electron Laser resonators", 29th EOS Topical Meeting "Electromagnetic Optics 2", Paris., 27-30 August, 2001.
- H. Tortel, M. Saillard, "Localization and Determination of an Optimal sphere for 3D", URSI 2001 (Boston).
- S. Enoch, G. Tayeb, D. Maystre, "Usage des cristaux photoniques dans la conception d'émetteurs directifs", réunion du GdR "Microcavités et Cristaux Photoniques", Orsay 6 Juin 2000.
- A. Nicolet, "Analogie entre la méthode des éléments finis et les équations de circuit", Numelec 2000, Poitiers, France, mars 2000, actes de la conférence, pp. 20-21.
- S. Enoch, B. Gralak, G. Tayeb, and D. Maystre, "Anomalous refractive properties of photonic crystals at the band edges", NATO Advanced Study Institute, Photonic Crystals And Light Localization Conference, Crete, Greece, June 19-30, 2000.
- E. Popov, M. Neviere, "Differential theory of gratings: new formulation for TM polarization with rapid convergence", International Conference on Optical Sciences and Applications for sustainable development, Dakar (Sénégal), 10-14 Avril 2000.
- B. Wattellier, J.P. Zou, C. Sauteret, A. Migus, N. Blanchot, P.Y. Baures, D. Husson, H. Bercegol, A. Reichart, F. Bonnemason, J. Flamand, B. Touzet, M. Neviere, "Improved damage threshold and diffraction efficiency of gratings for ultra-bright lasers in sub-picoseconde", Congrès Cléo, Nice, sept. 2000.
- Lancok J., Jelinek M., Escoubas L., Flory F., "Structural and optical properties of PLZT thin films deposited by PLD", 11th International School on Quantum Electronics: Laser Physics and Applications", Varna, Rep. Tchèque.
- C. Begon, F. Lemarchand, H. Rigneault, J. Rarity, "Spontaneous emission control with planar and corrugated dielectric structures for ultra sensitive fluorescence analysis in the life science", European Conference on Lasers and Electro-Optics, Nice, 10-15sept., 2000.
- C. Begon, H. Rigneault, S. Monneret, C. Provin, "Microstructures optomécaniques pour la détection et l'exaltation de la luminescence de molécules

biologiques individuelles en solution", Journées de Micro et nano-technologie, CNRS Paris, 7-8 novembre 2000.

- S; Benrezzak, P.M. Adam, J.L. Bijeon, P. Royer, S; Guy, B. Jacquier, P. Moretti, R. M. Montereali, M. Piccinini, F. Menchini, F. Somma, C. Seassal, H. Rigneault, "Fluorescence measurement of F2 color centers nanostructures bu an apertureless SNOM", 6th International Conference on Near Field Optics and Related Techniques, Twente, the Netherlands, 27-31 Aug., 2000.
- Jelinek M., Lancok J., Deineka A., Jastrabik L., Soukup L., Flory F., Escoubas L., "Optical and waveguiding properties of PLZT thin films deposited by laser ablation", 3rd Asian Meeting on Ferroelectrics, Hong Kong, December, 2000.
- Lancok J., Jelinek M. jastrabik L., Soukup L., Escoubas L., Flory F., "Optical properties of PLZT thin films deposited by laser ablation", Optické Komunikace O.K. 2000, listopadu, Praha, 14-15 juin, 2000.
- Amra C., Lequime M., Albrand G., Giovannini H., Rigneault H., Deumié C., "Solutions at Marseille Fresnel Institute for the reflexion and transmission narrow-band filtering in the near and far field regions", Thin films physics and applications, Shanghaï, Chine, 2000.
- Deumié C., Destouches N., Giovannini H., Albrand G., Amra C., "Analyse sans contact de la topographie et des hétérogénéités à différentes échelles : techniques de diffusion lumineuse", Colloque Mesures Optiques pour l'Industrie, Novembre, 2000.
- Commandré M., Gatto A., During A., Fossati C., "Correlation between absorption and scattering imaging in optical materials", Conf. 32th"Annual symposium on optical material for high power lasers", Boulder, Colorado, USA, October, 2000.
- Gervaise C., Gagliano, Serra J.J. Commandré M. Serror S., "Local thermal characterization of inner gun tube refractory metallic coatings", Heat transfer and transport phenomena in microsystems, Banff, Canada, 15-20 October, 2000.
- S. Cabanillas, G. Guillaume, Ph. Réfrégier, "Reconstruction of astromical images from low photon image sequence: study for Gaussian displacements.", IWISPA 2000, Pula, Croatie, 15-16 June 2000.
- Pagé V., Goudail F., "Analysis of the influence of phase encoding on the robustness of nonlinear Joint-Transform correlator to non overlapping noise.", Conférence Optics Computing 2000, Québec, Canada. 18-23 June 2000.
- Goudail F., Pagé V., Réfrégier Ph., "Optimal statistical estimation applied to detection and segmentation in active polarimetric images.", Europhysics conf. Abstracts. Polarisation Effects in lasers, spectroscopy and optoelectronics. Southampton, September 2000.

- Torchio Ph., Alvisi M., Albrand G., and Amra C., "UV-Mirrors by Ion Plating for Free Electron Lasers", Specific TMR Workshop on Optics, European Network Meeting "Towards a SR-FEL Source at 200 nm", ENSPM, Marseille, July 7, 2000.
- Sentenac A., Giovannini H., Saillard M., "Scattering from rough inhomogeneous films Progress in Electromagnetic Research Symposium", PIERS 2000, Boston, USA, 2000.
- P. Vincent, G. Tayeb, D. Maystre, "Cristaux photoniques métalliques: similarités entre les cristaux 2D et 3D", réunion du GdR Microcavités et Cristaux Photoniques, Lille, 20 mai 1999.
- S. Enoch, B. Gralak, G. Tayeb, "Anomalies des propriétés réfractives des cristaux photoniques", réunion du GdR Microcavités et Cristaux Photoniques, Marseille, 10-11 décembre 1999.
- Lemarchand F., Sentenac A., Giovannini H., "" What can do hybrid structures for optical filtering applications?", Conf. "Optical Systems design and Production", Technical University of Berlin, 25-28 May, 1999.
- Begon C., Rigneault H.,, "Parasitic thin films luminescence under UV irradiation", Conf. "Optical Systems design and Production", Technical University of Berlin, 25-28 May, 1999.
- Rigneault H., Begon C., Amra C., Lemarchand F.,, "Spontaneous emission modifications in wavelength scale photonic structures", Conf. "Optical Systems design and Production", Technical University of Berlin, 25-28 May, 1999.
- 8 Sentenac A., Ballot S., Rigneault H.,, "Study of the radiative and guided wave emission of a source located in rough planar dielectric structures", Conf. "Optical Systems design and Production", Technical University of Berlin, 25-28 Mai, 1999.
- Derrode S., Ghorbel F., "Extraction de familles complètes de descripteurs invariants par similitudes pour la reconnaissance d'objets à niveaux de gris.", 1er ateliers de Traitement et d'Analyse d'Images : Méthodes et Applications (TAIMA'99), Hammamet (Tn), 23-26 mars 1999.
- Mezhoud R., Bannour T., Derrode S., Ghorbel F., "Invariants des moments et applications.", 1er ateliers de Traitement et d'Analyse d'Images : Méthodes et Applications (TAIMA'99), Hammamet (Tn), 23-26 mars 1999.
- Natoli J.Y., Volto P., Akhouayri H., Amra C., "Defect densities and threshold curves of damage", Conf. "Optical Systems design and Production", Technical University of Berlin, 25-28 May, 1999.
- 4 J-Y Natoli, Z.L. Wu, C. Deumié, C. Amra, M. R. Kozlowski, "Laser Modulated Scatter from optical surfaces using fiber detection", Conf. 30th on

Optical Marerial for High Power Laser, Boulder, Colorado, USA, october 1999.

- Germain O., Réfrégier Ph., "Location accuracy of edge detectors for SAR images.", CEOS SAR Workshop, (Toulouse, France), 1999. ESA S.P 450, 1999.
- Germain O., Réfrégier Ph., "Segmentation d'images ROS multidates par contour actif statistique.", 17th Symposium, GRETSI'99: Signal and Image Processing, (Vannes, France), September 13-17, 1999.
- Torchio Ph., "Hard UV-Coatings Manufactured by Ion Plating", First Annual TMR Network Meeting, Eindhoven University of Technology, Eindhoven (The Netherlands), 22-23 November, 1999.